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Guide to using these notes

These notes feature two kinds of box, to help organize the material:

Gray boxes sometimes offer section summaries.

White boxes indicate material that is optional, and understanding this material is not required
for the course or exam.

Sections that have an asterisk ∗ at the end of their title can be skipped in their entirety (for students
in ECON 497 or ECON715): understanding this material is not required for the course or exam. These
sections are mostly there for your interest and reference. Sections with a dagger † at the end of their
title can be skipped for students in ECON497 but are required for students in ECON715.

I use the convention that := denotes equalities that are definitions.
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Chapter 1

Causality and the experimental ideal

Most interesting questions in social science concern causality. We aren’t just interested in observing what
happens in the social world, but understanding how and why they happen as they do. And we’re usually
interested in what changes to policy or behavior could lead to changes that we might deem desirable.

These types of questions concern causality. The meaning of the term “causal” is a long-standing
philosophical question; see Lewis (1973) for a fairly modern treatment that will accord with our approach
in this class. We will take a very simple perspective: A causes B if B would be different if A were different.
For example, on a day in which rain was forecast and I took my umbrella to school, we might say that
the rain forecast caused me to bring my umbrella, if I wouldn’t have taken the umbrella, absent the
forecast for rain. We of course can’t directly observe what would have happened if the forecast had been
different; we call this a counterfactual.

1.1 Potential outcomes and treatment effects

The potential outcomes framework offers an elegant and tractable way to talk about counterfactuals, in
the language of random variables (Rubin, 1974). This connects questions of causality to questions of
statistics, which we have been developing tools to study.

As a running example, consider the question of the effect of obtaining a college degree on a worker’s
earnings. Suppose we have data in the form of an i.i.d sample of (Di, Yi), where Di ∈ {0, 1} indicates
whether individual i completed a college degree, and Yi indicates the workers average hourly earnings at
age 30. We call Di our treatment variable, and Yi our outcome variable. We’re interested in the causal
effect of the treatment variable on the outcome. This is a setting in which we have a binary treatment.
We’ll start here because it’s the simplest setting to develop the concept of causality. In Section 1.7 I’ll
discuss how these ideas generalize beyond a binary treatment.

Definition 1.1. An individual’s potential outcomes are: Yi(1), Yi(0), where Yi(1) is the outcome they
would receive if they received the treatment, and the outcome Yi(0) they would receive if they did not.

In the returns-to-college example, Yi(0) is the earnings i would have if they didn’t go to college, and
Yi(1) is the earnings that i would have if they did go to college. The key thing to keep in mind in the
definition of counterfactuals is that we assume each individual i has a well-defined value both of Yi(0)
and of Yi(1). Regardless of whether i went to college or not, there is an answer to the question of how
much they would earn if they did go to college, and how much they would earn if they did not.

Note that some authors use the notation Y1i and Y0i, or Y 1
i and Y 0

i , for potential outcomes. I
prefer the notation Yi(1) and Yi(0) in general because it leads to less opportunity for confusion
when we bring in a second index for time in Chapter 6 (and have time-dependent potential
outcomes like Yit(0) and Yit(1)). This notation also makes the extension to a non-binary treatment
variable look nicer (to me anyways). For example, if x is years of schooling, we can define potential
outcomes Yi(x), e.g. earnings of individual i as a function of their years of schooling. See Section
1.7 for further discussion of non-binary treatments.

Consider for example a population composed of four individuals, pictured below. Person A would
earn $10 an hour if they didn’t graduate college, but if they did go to college they would get a higher-
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paying job that paid them $18 an hour at age 30. Person B is a higher earner, and would earn $25 an
hour without a college degree, and would earn $40 and hour with one. Person C would choose to leave
the labor force and earn $0 without a degree, but with a college degree would find a job that pays $12
an hour. Notice that for all three of these individuals, Yi(1) > Yi(0): the causal effect of college on their
earnings is positive. But this not need be the case: suppose person D would found a successful company
if they didn’t go to college, earning them $150 an hour by age 30, but if they did go to college they would
have missed a chance opportunity to start the company and earned $60 as an employee somewhere else.

Definition 1.2. An individual’s treatment effect is defined as: ∆i = Yi(1) − Yi(0), the difference
between their treated and untreated potential outcomes.

In the above example, the treatment effects ∆i are $8 an hour for Person A, $15 an hour for Person B,
$12 an hour for Person C, and $− 90 an hour for Person D. On average, treatment effects or positive—
although Person D’s individual treatment effect is negative. This example is thus a case of heterogeneous
treatment effects.

Definition 1.3. The phrase “homogenous treatment effects” describes a situation in which ∆i =
Yi(1)− Yi(0) is the same for all individuals i

Definition 1.4. The phrase “heterogenous treatment effects” describes a situation in which ∆i =
Yi(1)− Yi(0) differs across individuals i

When treatment effects are heterogeneous, a useful summary of them is provided by the average treatment
effect(ATE):

ATE = E[∆i] = E[Yi(1)− Yi(0)] (1.1)

The meaning of this quantity is discussed further in Section 1.3.

The important “leap of faith” that you need to take with potential outcomes is to believe that there
exists a value Yi(0) and Yi(1) for each individual, regardless of whether they actually went to college. If
i does graduate college (i.e Di = 1), then their actual earnings Yi, will be Yi = Yi(1). Similarly, if they
don’t go to college, then their earnings will be Di = 0. Another way of writing this is that, for each i:

Yi = Di · Yi(1) + (1−Di) · Yi(0) (1.2)

7



Notice that since Di ∈ {0, 1}, there is always one of the above terms that is equal to zero, and the
other term gives us the appropriate potential outcome. In the above example, suppose that Persons
A and D do go to college and graduate, while B and C do not. Then if we measure the earnings
and college-graduation status of each of the four individuals, our data will be {(Yi, Di)}i=1,2,3,4 =
{($18, 1), ($25, 0), ($0, 0), ($60, 0)}.

An assumption implicit in Eq. (1.2) is that each individual’s potential outcomes does not depend
on whether other individuals go to college. This is known as the “no-interference” condition of
the stable unit treatment value assumption, or SUTVA (Imbens and Rubin, 2015). This is not
always a harmless assumption, as it rules out spillover effects. Another assumption that is implicit
in the use of potential outcomes, but is made explicit by SUTVA is that there are no different
“versions” of treatment that lead to different potential outcomes for the same individual.

1.2 The fundamental problem of causal inference

What can we say about treatment effects, given this data? Consider for example individual D, who in
reality missed their opportunity to start the business and earn $150 an hour. This is a counterfactual,
something that would have happened if the world were different. Since we can’t observe what would
have happened, we’ll never be able to answer the question of what person D’s value of ∆i is, empirically.

Definition 1.5. The fundamental problem of causal inference is that for a given i, we only observe
one of the two potential outcomes: either Yi(1) if Di = 1, or Yi(0) if Di = 0. In other words, we only
observe i’s realized value Yi = Yi(Di), and not their other potential outcome.

The fundamental problem of causal inference means that we have a an “identification” problem. The
concept of identification comes from statistics and is at the core of econometrics. Here I’ll give a fairly
informal definition:

Definition 1.6. Given a set of assumptions about a population, we say that a quantity is identified when
there is a unique value of that quantity that is compatible with the distribution of observable variables in
that population.

The idea of the distribution of a quantity in a population is reviewed in Appendix A. When discussing
identification, it is common to refer to the quantity for which identification is being discussed as a
“parameter of interest”. See Appendix C for further discussion of identification.

Suppose for the moment that our population has a single individual i and our parameter of interest
is their treatment effect ∆i = Yi(1)− Yi(0). Our observable variables are Yi and Di. Suppose that i did
graduate from college, so Di = 1. Therefore the observed outcome Yi is equal to Yi(1). By contrast,
we do not observe Yi(0). Therefore, we must conclude that the quantity ∆i is not identified. Individual
treatment effects ∆i are always unidentified, due to the fundamental problem of causal inference.

Nevertheless, we’ll see that we can still sometimes make statements about average treatment effects,
by using other students who didn’t go to college as a comparison group. A key result that we will see
below, is that the ATE is identified when Di is randomly assigned.

1.3 Potential outcomes as random variables

Recall the definition of the average treatment effect given in Eq. (1.1)

ATE = E[∆i] = E[Yi(1)− Yi(0)]

In applying the expectation operator to ∆i, we are here invoking the idea of a probability distribution over
treatment effects (see Appendix A.4 for the definition of expectation). You can think of this distribution
as the one that arises from drawing an individual at random from the population and observing their
value of ∆i. When the relevant population is a finite collection I of N individuals, the expectation
defined in this way coincides with a simple arithmetic mean of ∆i over all i in I:

ATE =
1

N

∑

i∈I
∆i
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It is thus natural to refer to ATE = E[∆i] as the “population mean” of ∆i (see Appendix B.1 for a
discussion of random variables defined by sampling from a population).

We thus view Yi(1) and Yi(0) as random variables. To view them as defined in a common probability
space, we need to make the “leap of faith” described above: each individual i has a value both of Yi(1)
and a value of Yi(0) (if they did not, we could not define ∆i or associate any meaning to its expectation).

Since the expectation operator is linear, we can rewrite the average treatment effect as

ATE = E[Yi(1)]−E[Yi(0)]

showing that the ATE is equal to the difference between the mean of Yi(1) and the mean of Yi(0) in the
population. Note that the expectation of Yi(0) depends only on its marginal distribution: we don’t need
to know e.g. whether Yi(0) and Yi(1) are correlated with one another to compute E[Yi(0)]. Similarly,
E[Yi(1)] depends only on the marginal distribution of Yi(1), and thus the ATE depends only on the
marginal distributions of Yi(0) and Yi(1). However, average treatment effect is not the only thing we
can say about causality given access to marginal distributions of potential outcomes: see Section 1.8 for
discussion.

The random variables Yi(1) and Yi(0) do have a joint distribution in the population, and it’s unlikely
that they would be statistically independent of one another. In particular, it’s natural to expect individ-
uals with higher Yi(1) to also have higher Yi(0). Because of the fundamental problem of causal inference
though, there is not a whole lot we can say about the joint distribution of potential outcomes by looking
at observable data. Fortunately, averages of treatment effects like the ATE typically only depend upon
the marginal distributions, so we can have a hope of identifying these kinds of parameters.

Note that although we can’t observe the joint distribution of Yi(1) and Yi(0) directly, we can
make assumptions about it and in some cases test these assumptions. For instance, if we assume
that treatment effects are homogenous, this implies a perfect positive relationship between Yi(0)
and Yi(1), since then Yi(1) = Yi(0) + ∆. Although we cannot check whether treatment effect ho-
mogeneity holds directly (because we never see both potential outcomes for the same individual),
homogenous treatment effects does make a prediction about the marginal distributions of Yi(0)
and Yi(1) (in particular, that the CDF of Yi(0) is a horizontal shift of the CDF of Yi(1). Thus,
there do exist statistical tests for treatment effect heterogeneity (see e.g. Heckman et al. (1997b)
for a discussion).

Note that the realized value of Yi and treatment status Di are also random variables. The goal of causal
inference is to use the joint distribution of Yi and Di, which is observable, to learn something about the
distribution of treatment effects ∆i.

1.4 A naive comparison of means suffers from selection bias

A natural instinct is to compare the average value of the outcome variable among the “treatment group”
Di = 1 and “control group” Di = 0. Let θDM denote this difference in means:

θDM := E[Yi|Di = 1]−E[Yi|Di = 0]

Suppose that we can observe that E[Yi|Di = 1] ≥ E[Yi|Di = 0]. Can we conclude from our data that
going to college causes ones earnings at age 30 to be higher?

Review: A quantity like E[Yi|Di = 1] can be interpreted as the average value of Yi among all
individuals i in a population for which Di = 1. See Appendix Section A.5 for a formal definition
of the conditional expectation.

We know from Equation (1.2) that for any individual for whom Di = 1, our observed Yi is Yi = Yi(1).
Similarly for any individual who doesn’t go to college, Yi = Yi(0). Thus, we can rewrite the estimand of
our difference-in-means estimator as:

θDM = E[Yi(1)|Di = 1]−E[Yi(0)|Di = 0] (1.3)
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Notice that the first term in Eq. (1.3) conditions on the event Di = 1, and the second term conditions on
Di = 0. This means that the difference-in-means estimand compares two different groups, which might
not be comparable to one another. For example, students who go to college might have higher “ability”
(e.g. as measured by test scores) than students who do not. This might be why wages are higher among
college graduates, rather than it being from a causal effect of college on earnings.

Suppose for the moment that the second term in Eq. (1.3) had also conditioned on the event Di = 1,
rather than on Di = 0. If this were the case, then we could use linearity of the expectation to rewrite
θDM as being equal to E[Yi(1)− Yi(0)|Di = 1], the average treatment effect ∆i among students who do
go to college. We call this the average treatment effect on the treated, or ATT . The ATT is a causal
parameter, because it compares the values of Yi(1) and Yi(0), on average, for the same group.

Back to the general setting. Note that by adding and subtracting E[Yi(0)|Di = 1] to equation (1.3),
we can write:

θDM = {E[Yi(1)− Yi(0)|Di = 1]}︸ ︷︷ ︸
ATT

+ {E[Yi(0)|Di = 1]−E[Yi(0)|Di = 0]}︸ ︷︷ ︸
selection bias

(1.4)

The parameter ATT is not identified, unless the selection bias term E[Yi(0)|Di = 1]−E[Yi(0)|Di = 0] is
equal to zero (or more generally, has a known value). This term represents a measure of non-comparability
between the students who go to college and the students who do not, in terms of their counterfactual
earnings Yi(0).

For example, students who obtain a college degree may be more likely to come from family back-
grounds in which their parent(s) had time and resources to help the student accumulate skills that are
valued by the labor market. As a result, these students would have earned more on average, even if
they didn’t go to college and hence E[Yi(0)|Di = 1] > E[Yi(0)|Di = 0]. Many other stories also lead
to a positive correlation between Di and Yi(0): students whose parents are well-connected may be more
likely to go to college, and earn more even if they didn’t go to college, and any genetic traits that are
associated with higher earnings are likely to also increase college attendance.

1.5 Randomization eliminates selection bias

A sufficient condition for the selection bias term to be zero is that E[Yi(0)|Di = 1] = E[Yi(0)|Di = 0].
Often a condition like this is refered to as Yi(0) being mean-independent of Di. One case in which this
will hold is when Di is assigned completely randomly, as in a randomized controlled trial.

Definition 1.7. Random assignment says that (Yi(0), Yi(1)) ⊥⊥ Di

Random assignment says that treatment Di is unrelated to potential outcomes, in a statistical sense.
For example, individuals who would earn more even without a college degree are no more or less likely
to go to college.

The random assignment assumption is stronger than we need to kill the selection bias term in
Equation (1.4). All we need for that is E[Yi(0)|Di = 1] = E[Yi(0)|Di = 0]. This is implied by ran-
dom assignment, because (Yi(0), Yi(1)) ⊥⊥ Di implies that Yi(0) ⊥⊥ Di, which in turn implies that
E[Yi(0)|Di = 1] = E[Yi(0)|Di = 0].

Exercise: show that for any random variable Vi, if Vi ⊥⊥ Di and Di is binary, then E[Vi|Di = 1] =
E[Vi|Di = 0] = E[Vi].

Review: what is statistical independence?

Definition 1.8. We say that random variables A and B are independent if FAB(a, b) = FA(a) ·
FB(b) for all a and b.

This definition extends naturally to cases where A or B is a random vector, rather than a scalar
random variable. In the case of 1.7, we can let A = (Yi(1), Yi(0)) and B = Di.

When A and B are independent, we denote this fact as A ⊥⊥ B. When they are not, we say
A 6⊥⊥ B. See Appendix A.3.3 for more details.
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When the selection-bias term in Equation (1.4) is equal to zero, the ATT is identified. There is only
one value of ATT compatible with the population distribution of observables, since (Yi, Di) is observed
and ATT = E[Yi|Di = 1]−E[Yi|Di = 1]. However, under random-assignment we can actually say more.
Not only is the ATT identified, but so is the average treatment effect :

ATE = E[Yi(1)− Yi(0)] = P (Di = 1) ·ATT + (1− P (Di = 1)) ·ATU

where ATU := E[Yi(1)− Yi(0)|Di = 0] is the average treatment effect on the untreated, and we’ve used
the law of iterated expectations to decompose ATE into the ATT and ATU. Since the random-assignment
assumption says that treated potential outcomes Yi(1) are also independent of treatment Di, we have
not only that E[Yi(0)|Di = 1] = E[Yi(0)|Di = 0], but also that E[Yi(1)|Di = 1] = E[Yi(1)|Di = 0], and
thus the ATT , ATU , and ATE are all equal to one another.

In non-experimental settings, one may be able to identify a parameter like the ATT without being
able to identify the ATE. An example of this is the difference-in-differences research design, which (in
its basic, most common form) only yields identification of the ATT and not the ATU or ATE.

Note: Even the above argument that ATT = ATU = ATE = E[Yi|Di = 1]−E[Yi|Di = 0] only
ever makes use of Yi(0) being independent of Di, and Yi(1) being independent of Di. This is still
weaker than the assumption made above, that Yi(0) and Yi(1) are jointly independent of Di. In
practice, it’s usually hard to come up for an argument for why only the marginal distributions of
Yi(1) and Yi(0) would be independent of Di, and not their joint distribution, which is why I’ve
written it the way I have.

Note: Definition 1.7 corresponds to a randomized controlled trial with perfect compliance. In
many real-world trials, the only thing that can be randomized is whether an individual is assigned
to receive treatment. But subjects may still choose whether to actually receive treatment. In
these cases, one can use the method of instrumental variables to estimate causal effects, which
you’ll see later in the course.

1.6 Simple linear regression with a binary treatment

We’ve seen in the last section that when we have random assignment the difference in means θDM
uncovers the average treatment effect (ATE):

E[Yi|Di = 1] = E[Yi|Di = 0]︸ ︷︷ ︸
θDM

= E[Yi(1)− Yi(0)]︸ ︷︷ ︸
ATE

In the next chapter, we will see that regression provides a tool to extend this result to a setting in which
we use control variables to isolate random variation in Di, an approach known as selection-on-observables.

However, we can use linear regression even with random assignment, which represents the simplest
and most idealized case. To see this, consider the regression model:

Yi = β0 + β1Di + εi (1.5)

Recall (see Appendix ??) that the OLS parameter β1 is given by the formula

β1 =
Cov(Yi, Di)

V ar(Di)

This can be used to show that β1 in Eq. (1.5) is identical to the difference in means θDM introduced in
the preceeding sections. The proof is left as an exercise.

Exercise: Show that with a binary D, we have that Cov(Yi,Di)
V ar(Di)

= E[Yi|Di = 1]− E[Yi|Di = 0]

This in turn implies that β1 from a simple linear regression of Y on D uncovers the ATE, when we have
random assignment of D.
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In the special case of homogenous treatment effects (∆i = ∆ for all i), we can see the equivalence
between β1 and the ATE directly in terms of Eq. (1.5). Note that in this case ATE = ∆, so we wish to
show that β1 = ∆.

Yi = Yi(Di) = Yi(0) + ∆i ·Di

= Yi(0) + ∆ ·Di

= E[Yi(0)]︸ ︷︷ ︸
β0

+ ∆︸︷︷︸
β1

·Di + Yi(0)−E[Yi(0)]︸ ︷︷ ︸
εi

= β0 + β1Di + εi

where we simply define the regression residual εi for individual i to be the difference between Yi(0) and
it’s average in the population E[Yi(0)]. Note that it is important that treatment effects be homogenous
for us to replace ∆i with ∆ in the above. Nevertheless, a simple linear regression of Y on D contiues to
identify the ATE even if treatment effects are heterogenous.

In this simple setting, the assumption of homogenous treatment effects is exactly equivalent to the
“structural” interpretation of linear regression that you may have learned as an undergraduate, that we
interperet Eq. (1.5) as a story about how the world works: e.g. wages equal β0, plus an effect of college
β1, plus an idiosyncratic error term. This amounts to assuming that potential outcomes take the form
Yi(d) = β0 + β1 · d + εi for d ∈ {0, 1} and by random assignment E[εi|Di = d] does not depend on d
(without loss of generality we can now take E[εi|Di] = 0 since a non-zero value for this expectation could
be absorbed into β0). Then, we have that the realized value of Yi

Yi = Yi(Di) = β0 + β1 ·Di + εi,

recovering (1.5).

1.7 Causality beyond a binary treatment*

In this chapter we’ve focused on a binary treatment, which takes just two values: Di = 1 (“treatment”),
and Di = 0 (“control”). However, we’re often interested in the causal effect of a treatment variable that
takes on many values. For example, what is the effect of years of schooling on earnings, rather than just
the effect of completing any college degree?

Setting up the notation for multivalued treatment variables is pretty straightforward. We can define
our potential outcomes Yi(d) in the same way as before, where now d index all of the values that Di

might take. Here are some examples:

• Let d be the number of years of schooling student i completes, and Yi(d) be their earnings at age
30.

• Let d be the price of some good, and let the function Yi(d) be the demand function for that good
in market i.

• Let d be the high school that student i attends, and let Yi(d) be an indicator for whether they were
accepted to UCalgary, e.g. d ∈ {school A, school B, school C, etc.}.

• In a randomized experiment about the effect of social media on mental health, subjects i are
assigned to three different treatments:

d ∈ {no social media,Facebook only,Twitter only,Facebook and Twitter}

Regardless of the setting, we can still define random assignment and selection-on-observables exactly as
we did before, we just now have to phrase it in terms of the vector of all Yi(d) for all treatment values d
instead of just the two potential outcomes (Yi(1), Yi(0).

However, with more than two values of treatment, there are now many different ways to think about
treatment effects. For example, in the first example above, we can think about the effect of finishing
grade 12 as:

Yi(12)− Yi(11),
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while the effect of completing high-school versus dropping out after grade 10 is:

Yi(12)− Yi(10)

The overall average causal effect of the last year of schooling that each student actually completes would
be

E[Yi(Di)− Yi(Di − 1)]

In the first two examples above, the values of treatment Di have a natural order to them. In the
third and fourth examples, treatment is categorical, and there may not be a natural such order. With an
unordered treatment, like in the last example, we might pick one comparison category and consider treat-
ment effects with respect to it, e.g. separately estimating E[Yi(Facebook only) − Yi(no social media)],
E[Yi(Twitter only)− Yi(no social media)] and E[Yi(Facebook and Twitter)− Yi(no social media)].

1.8 Moving beyond average treatment effects*

Although our discussion here has been focused on parameters that average over treatment effects ∆i =
Yi(1)− Yi(0), this isn’t the only type of causal question that we can answer with random-assignment.

Consider a binary treatment Di and random assignment: (Yi(0), Yi(1)) ⊥⊥ Di. Note that we can apply
any function g(·) to the potential outcomes, without destroying independence, i.e. (g(Yi(0)), g(Yi(1))) ⊥
⊥ Di. Why is this useful? Consider the function g(t) = 1(t ≤ y) for some value y. Given that
random-assignment implies that the random variable 1(Yi(1) ≤ y) is independent of Di, we have that

E[1(Yi ≤ y)|Di = 1]︸ ︷︷ ︸
FY |D=1(y)

= E[1(Yi(1) ≤ y)|Di = 1] = E[1(Yi(1) ≤ y)]︸ ︷︷ ︸
FY (1)(y)

The term on the left is the conditional CDF of Yi given Di = 1, which can be computed from the data.
The term on the right is the (unconditional) CDF of the treated potential outcome Yi(1). This expression
shows that we can identify the CDF of Yi(1) at any point y. Collecting over all y, we can thus compute
the entire distribution of Yi(1).

By the same logic, we can also identify the entire distribution of Yi(0), using FY |D=1(y) = E[1(Yi ≤
y)|Di = 1]. That means that we can use random-assignment to uncover the effect of treatment on the
entire distribution of outcomes. This lets us answer a new set of causal questions. For instance: what is
the difference between the median value of Yi(1) and the median value of Yi(0)? This is an example of
a so-called quantile-treatment effect.

A natural question that you might hope to answer is: how many individuals in my population have
a negative treatment effect Yi(1) < Yi(0), versus a positive one? This is a harder type of question,
because it depends on the joint distribution of potential outcomes. By contrast, random assignment
(and similarly selection-on-observables, or quasi-experimental approaches), only let us identify each of
the marginal distributions of Yi(0) and Yi(1), due to the fundamental problem of causal inference.

The situation is not completely hopeless: the marginal distributions of Yi(1) and Yi(0) do put some
restrictions on the distribution of treatment effects. For instance, it can be shown that a lower bound
on the proportion “harmed” by treatment P (∆i ≤ 0) is the supremum of FY (1)(y) − FY (0)(y) over all
values of y (see e.g. Fan and Park, 2010 for details). We can also make additional assumptions that
allow us to say more about the distribution of treatment effects. For example, the strong assumption
of rank-invariance allows us to trace out the entire CDF of ∆i, and in principle estimate the treatment
effect for any given individual (see e.g. Heckman et al., 1997b).
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Chapter 2

Selection on observables

Outside of an actual experimental setting, the random-assignment assumption is very strong. Typically,
economic agents “select into” treatment, meaning they choose for themselves whether or not Di = 1 or
Di = 0. There are usually a variety of reasons why the circumstances and preferences that lead to a
choice of taking treatment can be expected to be correlated with potential outcomes.

2.1 The selection-on-observables assumption

Suppose we observe a vector of covariates Xi, along with Yi and Di. Then, the following assumption is
often considered to be weaker than assuming fully random-assignment:

Definition 2.1. Selection-on-observables, also referred to as unconfoundedness, says that

{(Yi(0), Yi(1)) ⊥⊥ Di}|Xi

Selection-on-observables makes the same assumption as random assignment, but we assume it holds
conditional on each value Xi. It is thus often also called a conditional independence assumption.

Review: what is conditional statistical independence?

Definition 2.2 (conditional independence). We say that A and B are independent con-
ditional on C, denoted (A ⊥⊥ B)|C, if for any values a, b, c of A,B,C: FAB|C=c(a, b) =
FA|C=c(a) · FB|C=c(b).

In this definition, A, B and C can all be random vectors, each having multiple components. See
Appendix A.6.2.2 for more details.

Analagous to the random-assignment case, conditional independence will be useful for us because
it allows us to remove conditioning on a random variable inside of an expectation. In this case,
the relevant property is that if (A ⊥⊥ B)|C, then for any b and c:

E[A|B = b, C = c] = E[A|C = c]

A nice example of a setting in which selection-on-observables is very credible is provided by Washington
(2008), who looks at the effect of having daughters on the feminist sympathies of legislators in the U.S.
House of Representatives. While the sex (assigned at birth) of a given child is random, whether or not
a legislator has a daughter is correlated with political views because conservatives tend to have more
childen. Let Yi(0) indicate feminist sympathies if legislator i does not have a daugher (measured by
a score, see paper), and Yi(1) their feminist sympathies if they do. While Di 6⊥⊥ Yi(0), selection-on-
observables is very plausible if we condition on number of children i has overall, Xi. For another clever
and compelling example of using selection-on-observables, I recommend looking at Dale and Krueger
(2002).
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How does the selection-on-observables assumption help us? Note that if it holds then

E[Yi|Xi = x,Di = 1]−E[Yi|Xi = x,Di = 0] = E[Yi(1)|Xi = x,Di = 1]−E[Yi(0)|Xi = x,Di = 0]

= E[Yi(1)|Xi = x]−E[Yi(0)|Xi = x]

= E[Yi(1)− Yi(0)|Xi = x] := ATE(x) (2.1)

Thus, the average treatment effect, conditional on X is identified by a version of the difference in means
estimand that conditions on any given value x of Xi. Let us denote this parameter as ATE(x). Equa-
tion 2.1 shows that under selection-on-observables, it is identified. Since we also observe the marginal
distribution of Xi, we can then recover for example the overall average treatment effect by averaging
over values of the control variables:

ATE =

∫
E[Yi(1)− Yi(0)|Xi = x] · dF (x) =

∫
ATE(x) · dF (x)

which follows by the law of iterated expectations.
There are three main approaches to making use of the selection-on-observables assumption in this

way: inverse-propensity score weighting, matching, and regression. In this class, we’ll focus on the third
of these, regression, but I briefly introduce the other two at the end of this section. The three approaches
can be thought of as essentially three different strategies to construct an estimator for ATE(x), but are
all fundamentally based off of the identification result (2.1).

Recall that the difference-in-means θDM from Section 1.4 is equal to the ATE under random as-
signment. However, one can not simply estimate θDM to get the ATE under selection-on-observables.
Conditioning on Xi is necessary, which the three methods above all accomplish in various ways. The
excersize below shows that θDM instead estimates the average treatment on the treated ATT, plus an-
other term that depends on the correlation between Di and Xi.

Exercise: Show that θDM does not condition on Xi does generally estimate the ATE under selection-on-
observables.

Solution: Suppose for simplicity that Xi is discrete. Then, by LIE:

θDM = E[Yi|Di = 1]−E[Yi|Di = 0]

= E[Yi(1)|Di = 1]−E[Yi(0)|Di = 0]

=
∑
x

P (Xi = x|Di = 1) ·E[Yi(1)|Xi = x,Di = 1]−
∑
x

P (Xi = x|Di = 0) ·E[Yi(0)|Xi = x,Di = 0]

=
∑
x

P (Xi = x|Di = 1) ·E[Yi(1)|Xi = x]−
∑
x

P (Xi = x|Di = 0) ·E[Yi(0)|Xi = x]

=
∑
x

P (Xi = x|Di = 1) ·E[Yi(1)− Yi(0)|Xi = x]︸ ︷︷ ︸
=ATT, by law of iterated expectations

+
∑
x

{P (Xi = x|Di = 1)− P (Xi = x|Di = 0)} ·E[Yi(0)|Xi = x]

Question: Under selection on observables, is it true that E[Yi|Xi = x,Di = d] = E[Yi|Xi = x]?
Answer: No! While it is true that E[Yi(d)|Xi = x,Di = d] = E[Yi(d)|Xi = x] for any d ∈ {0, 1},
the same cannot be said about E[Yi|Xi = x,Di = d] in general. The reason is that we have not as-
sumed that {Yi ⊥⊥ Di}|Xi, but rather {(Yi(0), Yi(1)) ⊥⊥ Di}|Xi. The former of these would mean that
realized outcomes are conditionally indepedent of treatment. The latter says that potential outcomes are.

Note: When using the selection-on-observables assumption, it is important that the variables in the
vector Xi are unaffected by treatment. That is, if we introduced potential outcomes Xi(0) and Xi(1),
we would have Xi(0) = Xi(1) for all i. To make sure of this, researchers typically consider variables
Xi that are measured earlier in time than treatment Di is assigned. When this condition fails, causal
inference can fail even when the selection-on-observables assumption holds, via a problem often referred
to as “bad-control”.

Why might selection-on-observables be more reasonable than random assignment, in general?
The basic idea is that if we observe a rich enough set of Xi, we might be able to control for
confounding factors that lead to selection bias. For example, in the returns-to-college example,
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we might include in the vector Xi whether ot not i’s parents graduated from college, their
socio-economic status, and i’s test scores in high school.

Imagine that we observed literally everything that matters for determining the outcome Yi, in
addition to treatment. In this case, we could write potential outcomes as

Yi(0) = Y (0, Xi) and Yi(0) = Y (0, Xi),

where the function Y (d, x) is common to everybody: once we know d and x we can say exactly
what is going to happen to you. Then selection-on-observables would be satisfied automatically,
since if we condition on Xi = x, then Yi(d) = Y (d, x) for either d ∈ {0, 1}. Notice that Y (d, x)
doesn’t depend on i: it is no longer random once we’ve fixed Xi. It is hence is uncorrelated with
Di, since degenerate random variables are statistcally independent of everything! This can be
seen as mimicking the logic of a carefully controlled experiment in the natural sciences, in which
we make sure “everything else” that matters Xi is held fixed, while varying Di between 0 and 1.

A similar logic would apply if Xi includes everything that determines Di: e.g. Di = d(Xi) for
some function d. Then we’d also get selection-on-observables for free. In practice, apart from
vey specific settings, we’ll never observe everything that determines outcomes Yi, or selection into
treatment Di. However, if we can control for most of obvious threats to eliminating selection
bias, we might be willing to think that our Xi get us most of the way there. However, adding
many Xi can also do more harm than good, because of the possibility of bad controls (see above)
and the curse of dimensionality hampering estimation (see Appendix C.3.1.2).

2.2 How to use selection-on-observables

2.2.1 Matching*

The approach of matching is probably the most intuitive application of selection-on-observables assump-
tion. It simply attempts to find, for each treated unit (Di = 1), an untreated unit (Di = 0) with the
same value of Xi. For this it is of course necessary that for each value of Xi, there are both treated and
untreated units, a condition oftern referred to as overlap or common support : 0 < P (Di = 1|Xi = x) <
1 for all x.

Suppose for the moment that Xi is a discrete variable, so that it’s possible to find pairs of observations
that have identical Xi. In the most basic version of matching (one-to-one, exact matching), we would
for each treated unit i find a control unit i′ such that Xi = Xi′ . We drop any control units that are
not matched, and then calculate the difference in means between treatment and control in this modified
sample. When X is a vector with many components, finding pairs such that Xi = Xi′ can become
difficult. If X includes any components that are continuously distributed, it becomes impossible. In
these cases we’d need to settle for finding an i′ such that Xi ≈ Xi′ .

However, a clever application of the selection-on-observables assumption (Rosenbaum and Rubin,
1983) allows us to simplify the problem considerably, leading to the most popular implementation of
matching: called propensity-score matching. They observe that selection-on-observables implies that for
any p ∈ (0, 1):

E[Yi|Di = 1,P(Xi) = p]−E[Yi|Di = 0,P(Xi) = p] = E[Yi(1)− Yi(0)|P (Xi) = p]

where P(x) = P (Di = 1|Xi = x) is called the propensity score function. This expression says that
conditioning on values of the propensity score rather than on Xi itself is sufficient to estimate causal
effects. This is useful because while Xi may have many components, the propensity score is always a
scalar. Thus, we simply need to estimate the function P(x), and then match units i and i′ such that
P(Xi) ≈ P(Xi′), rather than finding a good way to compare X on all dimensions.

A good exercise in the law of iterated expectations to verify the above expression. Begin by
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noticing that

E[Yi|Di = d,P(Xi) = p] = E {E[Yi|Di = d,Xi]|Di = d,P(Xi) = p}

or any d ∈ {0, 1}. This expression follows from the law of iterated expectations, where the
outer average is over the distribution of Xi such that P (Xi) = p. If for example Xi is
continuously distributed, then this outer average is an integral over the conditional density

fX|P(X)=p(x) = f(x)∫
x:P(x)=p

f(x)dx
if P(x) = p, and is equal to zero otherwise. Note that we’ve been

able to remove the conditioning on P(Xi) = p in the inner expectation, because once Xi is fixed,
P(Xi) is as well.

Using the standard selection-on-observables argument, we know that for any x, E[Yi|Di = d,Xi =
x] = E[Yi(d)|Xi = x]. Thus:

E[Yi|Di = d,P(Xi) = p] = E {E[Yi(d)|Xi]|Di = d,P(Xi) = p}

We now use the fact that {Xi ⊥⊥ Di}|P(Xi) to remove the conditioning on Di = d on
the outer expectation above. Once we’ve done this, we can apply the law of iterated expecta-
tions again (this time in the reverse direction), this is equal to E[Yi(d)|P(Xi) = p] and we’re done!

To see that {Xi ⊥⊥ Di}|P(Xi) = p, observe that P (Di = 1|Xi = x,P(Xi) = p) = P (Di = 1|Xi =
x) = P(x). The event Xi = x,P(Xi) = p is only possible if the value x is such that P(x) = p
(otherwise the conditional probability P (Di = 1|Xi = x,P(Xi) = p) = P (Di = 1|Xi = x) is
undefined, and we don’t need to worry about this x). Therefore, we’ve shown that P (Di =
1|Xi = x,P(Xi) = p) = P(x) = p for any such x, which does not depend on the precise value of
x. This is equivalent to saying Xi and Di are independent, conditional on P(Xi) = p.

A lively debate between the mid-1980s and early 2000’s studied the merits of the matching approach
by comparing it to experimental estimates. LaLonde (1986) analyzed data from an employment program
in the U.S. called the National Supported Work Demonstration (NSWD), which provided participants
with a guaranteed job and training. Only certain populations were eligible for the program (including
folks who did not graduate high school, young mothers with children, and individuals who were formerly
incarcerated). Crucially, acceptance into the NSWD was randomized, which means that it’s effect on e.g.
labor force participation can be estimated by a simple difference in means (where the treatment group
are applicants who were randomly selected to receive NSWD, and the control group are applicants who
were not randomly selected).

LaLonde (1986) aimed to asses the reliability of non-experimental techniques for program evaluation
by benchmarking them against the ATE estimated using the NSWD randomization. To do this, he
discarded the data from applicants who were not accepted into the program, but merged in data from
individuals in other surveys (namely the PSID a the CPS merged to social-security records), to construct
a “non-experimental” control group. The idea is that if other approaches to causal inference (e.g.
using regression adjustment) find an appopriate comparison group to those treated by the NSWD, then
they should deliver similar results. Instead, LaLonde found that the non-experimental approaches he
considered yielded estimates that were often quite different than the “true” ATE (known from the RCT)
and varied a lot between alternate estimation techniques.

Dehejia and Wahba (1999) later repeated LaLonde’s analysis using propensity score matching (with a
slightly different sample, but the same underlying data), and found that the results matched the “known”
ATE much better. They also found that somewhat arbitrary choices about how to model the propensity
score function (e.g. putting in X’s linearly or including powers of them) mattered little. This was taken
as evidence that propensity score matching was a robust method that “worked”, at least in this empirical
setting.

Later, Smith and Todd (2005) called Dehejia and Wahba (1999)’s robustness conclusion into question,
showing that the results were sensitive to which variables were included in X, as well as the precise sample
that was used for estimation. They instead found that a difference-in-differences version of the matching
estimator (based on prior work by Heckman et al. 1997a worked well).

This was an important episode in the intellectual history of econometrics and labor economics, but
I wouldn’t extrapolate too much from the findings (which could be particular to the context they were

17



studying, the NSWD data). One thing that you should take away from this chapter is that propensity
score matching is only justified under a selection-on-observables assumption. So assessing the perfor-
mance of a particular implementation of propensity score matching (if we know the “true” value of
the ATE) amounts to assessing both the estimation technique (e.g. how exactly the function p(x) is
estimated) as well as the selection-on-observables assumption. In the case of the NSWD, we may not
have a strong theoretical reason to beleive selection-on-observables holds, which could lead to biases of
unpredictable signs across different estimation techniques.

The important lesson is that one’s method of estimation should be guided by the identifying assump-
tions that one is willing to make. If you are trying to estimate causal effects, you have to be willing to
defend the plausibility of those assumptions on their own merits, not on the basis of whether they give
one particular result or another (because unlike LaLonde, we usually don’t have a strong prior idea of
what the “truth” is, when studying a novel causal question).

2.2.2 Inverse propensity score weighting*

Under selection-on-observables, one can also show that:

ATE = E

[
Di · Yi
P(Xi)

− (1−Di) · Yi
1− P(Xi)

]

Estimating the ATE through the above expression is known as inverse propensity score weighting. Note
that this first requires estimating the propensity score function P(x) = P (Di = 1|Xi = x) for all values
of x. Then one can form a sample estimator of the expectation above, using P(Xi) for each observa-
tion. Inverse propensity score weighting is a lot like propensity score matching, but doesn’t have a step
in which we need to actually pair up treatment/control observations by matching their values of the
propensity score. You can think of the pairing as happening automatically “under-the-hood”.

Why then does propensity score weighting work? You guessed it, we’re going to use the law of iterated
expectations to show that it does. Note that by the law of iterated expectations and selection-on-
observables:

E

[
Di · Yi

P (Di = 1|Xi)
− (1−Di) · Yi

1− P (Di = 1|Xi)

]
= E

{
E

[
Di · Yi

P (Di = 1|Xi)
− (1−Di) · Yi

1− P (Di = 1|Xi)

∣∣∣∣Xi

]}
=

∫ {
E

[
Di · Yi

P (Di = 1|Xi)
− (1−Di) · Yi

1− P (Di = 1|Xi)

∣∣∣∣Xi = x

]}
· dFX(x)

=

∫ {
E[Di · Yi|Xi = x]

P (Di = 1|Xi = x)
− E[(1−Di) · Yi|Xi = x]

1− P (Di = 1|Xi = x)

}
· dFX(x)

=

∫ {
E[Di · Yi(1)|Xi = x]

P (Di = 1|Xi = x)
− E[(1−Di) · Yi(0)|Xi = x]

1− P (Di = 1|Xi = x)

}
· dFX(x)

=

∫ {
((((

(((P (Di = 1|Xi = x) ·E[Yi(1)|Di = 1, Xi = x]

((((
(((P (Di = 1|Xi = x)

−((((
((((

((
(1− P (Di = 1|Xi = x)) ·E[Yi(0)|Di = 0, Xi = x]

(((
((((

((
1− P (Di = 1|Xi = x)

}
· dFX(x)

=

∫
{E[Yi(1)|Xi = x]−E[Yi(0)|Xi = x]} · dFX(x)

= E[Yi(1)− Yi(0)] = ATE

2.2.3 Linear regression

In practice, the most common technique that implements a selection-on-observables identification strat-
egy is linear regression. In it’s most basic form, linear regression is just a simple way of estimating
conditional expectation functions, when they are linear functions of the things being conditioned on.

Recall that under the selection-on-observables assumption, and with a binary treatment variable, the
average treatment effect conditional on X = x can be calculated as:

ATE(x) = E[Yi(1)− Yi(0)|Xi = x] = E[Yi|Xi = x,Di = 1]−E[Yi|Xi = x,Di = 0]

This requires having a way to estimate conditional expectations of the form E[Yi|Xi = x,Di = d] for
d = 0 and d = 1, given a sample of data. How should we do this?
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If X is a discrete random variable, there is a pretty straightforward way we could do this. With i.i.d.
data, a consistent estimator is simply the mean among the sub-sample of data for which Di = d and
Xi = x:

1

# of observations i for which Xi = x and Di = d

∑

i:Xi=x&Di=d

Yi

︸ ︷︷ ︸
Ê[Y |X=x,D=d]

p→ E[Y |X = x,D = d]

For a view of the concept of a consistent estimator, see Appendix C.3.1.1.

But remember that for the selection-on-observables assumption, we want X to be an extensive-enough
set of control variables to eliminate selection bias. So how should we proceed if X = (X1, X2, . . . Xk) is
a vector of several random variables, some of which might also be continuously distributed?

This is actually a hard problem, in general. Recall that E[Yi|Xi = x,Di = d] is a function of x and
d, which (in the notation of A.5.3) we might call m:

E[Yi|Xi = x,Di = d] = m(d, x1, x2, . . . xk)

where x1, x2, . . . xk are the components of the vector x. Provided that (Y,D,X) are all observed in a
random sample, the function m is identified. That is, for fixed values (x, d) there is only one value of
m(d, x1, x2, . . . xk) compatible with the joint distribution of our observables. Once we know the function
m, we can calculate treatment effects easily since

ATE(x) = m(1, x1, . . . xk)−m(0, x1, . . . xk)

However, estimation is another thing. Given our finite sample, how do we uncover the function
m(d, x1, x2, . . . xk)? This turns out to be particularly straightforward when the function m is linear, that
is:

m(d, x1, x2, . . . xk) = β0 + βDd+ β1x1 + β2x2 + · · ·+ βkxk (2.2)

for some set of coefficients (βD, β0, β1, . . . βk). In this case note that ATE(x) = m(1, x)−m(0, x) = βD
for all x. Since this difference yields the same fixed number βD regardless of x, the conditional-on-X
ATE is the same as the overall average treatment effect, so ATE = βD.

Assuming that the conditional expectation be linear in both d and x as in Eq. (2.2) avoids the need
to determine the functional form of function m from the data, which is probably why using linear regres-
sion to “control” for Xi is so common in practice. This bypasses the so-called “curse of dimensionality”
which makes estimation difficult when we have several X (see Sec C.3.1.2). However, linearity of the
CEF is often a strong assumption, and a good practice is to consider the possibilities of nonlinearities
and interactions among the Xi and between Di and Xi (see box below).

Angrist (1998) shows that if E[Di|Xi] is linear in the Xi, then estimating the regression equation
Yi = β0 + βDDi + β1X1i + β2X1i + · · ·+ βkXki + εi uncovers a weighted average of the ATE(x)
across covariate cells, even if 2.2 does not hold. This is perhaps surprising, because the regression
equation being estimated does not include any interactions between Di and Xi to model hetero-
geneity in treatment effects by Xi. A version of this result extends to a single ordered treatment
like years of schooling (Angrist and Krueger, 1999). However, it does not work in general for
multi-valued or multiple treatments (see Goldsmith-Pinkham et al. 2021). We return to these
issues in Section 3.5.
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Chapter 3

Review of linear regression

This section represents an abridged version of Chapter 7 from my notes Probability and Statistics for
Econoemtrics, which you can find on my website.

3.1 Review of statistical concepts

This section briefly reviews some of the statistical concepts that we’ll be using as we review linear
regression. This is an abridged version of the material presented in Appendices B and C, you might
consult them for further detail.

3.1.1 Samples and estimators

We’ll use the terms dataset or sample to refer to a collection of characteristics Xi = (X1i, X2i, . . . Xki)
for each of n observational units (such as individuals) i. These observations can be arranged into an
n× k matrix X as follows:

X =




X ′1
X ′2
...
X ′n


 =




(X11, X21, . . . Xk1)
(X12, X22, . . . Xk2)

...
(X1n, X2n, . . . Xkn)




Notation: Note that the entries of the sample matrix X are denoted Xji, where i index rows (individual
observations) and j index columns (variables/characteristics). This is backwards from the way we often
denote entries Mij of a matrix M, where the row i comes before the column j.

We will think of our dataset X as the realization of a collection of random vectors {X1, X2, . . . Xn}. The
typical view is that randomness of X comes from the fact that we could have drawn a different set of
individuals from the population, in which case we would have seen a different dataset X. To understand
this randomness, let us assume that individuals are sampled at random from a population:

Definition 3.1. A collection of random vectors {X1, X2, . . . Xn} are called independent and identically
distributed (i.i.d.) if Xi ⊥⊥ Xj for i 6= j and each Xi has the same marginal distribution as the others.

The i.i.d. model is typically used to describe simple random sampling. Simple random sampling oc-
curs when individuals are selected at random from some underlying population I, and a set of variables
Xi = (X1i, X2i, . . . Xki)

′ are recorded for each sampled individual i. Imagine for example a telephone
survey, in which enumerators have a long list I of potential individuals to contact. They use a random
number generator to choose an i at random from this list, contact them, and record responses to a set
of k questions. This process is then repeated n times.

When Xi for i = 1 . . . n denotes a collection of i.i.d random vectors, we’ll refer to the distribution F that
describes the marginal distribution of each Xi as the population distribution. The population distribution
is the distribution we get when we randomly select any individual from the population.

Data is not always generated by simple random sampling, but when it is, we can imagine X as being
formed by randomly choosing rows from a much larger matrix that records Xi for all individuals in the
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population, depicted in Figure B.1.

An alternative view of randomness in data used for causal inference is that it comes from the
assignment of who gets treated and who does not, rather than from who is selected in the sample.
This design-based view of uncertainty can be contrasted with the typical sampling-based uncer-
tainty. This leads in some cases to different types of statistical tests to perform inference on
treatment effects.

Another piece of terminology will be useful as we discuss samples and their population counterparts:

Definition 3.2. A statistic or estimator is any function of the sample X = (X ′1, X
′
2, . . . , X

′
n)′.

A generic estimator or statistic will apply some function g(X) = g(X1, X2, . . . Xn) to the collection of
random vectors that constitute the sample. An example is the so-called sample mean X̄n := 1

n

∑n
i=1Xi,

which simply adds together Xi for across the sample and divides by the number of observations n. X̄n

is an example of a statistic. Since each of the Xi is a random variable/vector, it follows that X̄n is itself
a random variable/vector. This is true of statistics in general: they are random.

The reason that we also refer to statistics as “estimators” is that statistics often attempt to estimate a
population quantity of some kind from data. For example, we might use X̄n as an estimate of µ. Note
that X̄n is random, while µ is just a fixed number.

Notation: Often estimators are depicted with a “hat” on them, e.g. θ̂ = g(X). We’ll use this notation
to denote a generic estimator.

3.1.2 Convergence in probability and the law of large numbers

Consider an i.i.d. sample {X1, . . . Xn} of some random variable Xi. The sample average of Xi in our
data simply takes the arithmetic mean across these n observations:

X̄n :=
1

n

n∑

i=1

Xi

The law of large numbers (LLN) states the deep and useful fact that for very large n, it becomes very
unlikely that X̄n is very far from µ = E[Xi], the “population mean” of Xi.

Theorem 1 (law of large numbers). If Xi are i.i.d random variables and E[Xi] is finite, then for
any ε > 0:

lim
n→∞

P (|X̄n − µ| > ε) = 0

Note: The LLN is stated above for a random variable, but the result generalizes easily to random
vectors. In that case, limn→∞ P (||X̄n − µ||2 > ε) = 0 where || · ||2 denotes the Euclidean norm, i.e.:
|X̄n − µ| = (|X̄n − µ|)′(|X̄n − µ|), where X̄n is a vector of sample means for each component of Xi, and
similarly for µ.

The law of large numbers is an example of convergence in probability :

Definition 3.3. We say that Zn converges in probability to Z if for any ε > 0:

lim
n→∞

P (||Zn − Z|| > ε) = 0

In this definition, Zn can be a random variable/vector. When Zn is a random variable, then the notation
||Zn − Z|| jut refers to the absolute value of the difference: |Zn − Z|. When Zn is a vector, we can take
||Zn − Z|| to be the Euclidean norm of the difference.

The law of large numbers says that X̄n
n→ µ, the sample mean converges in probability to the “population

mean”, or expectation, of Xi.

Exercise: This problem gives an example of a sequence that converges in probability to another random
variable, rather than to a constant. Let Zn = Z + X̄n, where Z is a random variable and X̄n is the
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sample mean of i.i.d. random variables Xi having zero mean and finite variance. Suppose furthermore
that Z and X̄n are independent. Show that plim(Zn) = Z.

3.1.3 Convergence in distribution and the central limit theorem †

Our second notion of convergence of a sequence of random vectors is convergence in distribution. Consider
first a sequence of scalar random variables:

Definition 3.4. We say that a random variable Zn converges in distribution to Z if, for any z such that
the CDF FZ(z) = P (Z ≤ z) of Z is continuous at z:

lim
n→∞

P (Zn ≤ z) = FZ(z)

Notation: When Zn converges in distribution to Z, we write this as Zn
d→ Z. As with convergence in

probability, Z can be a random vector or a constant.

Convergence in distribution essentially says that the CDF of Zn point-wise converges to the CDF of Z.

By “point-wise”, we mean that this occurs for each value z. When Zn
d→ Z, we often refer to Z as the

“large-sample” or “asymptotic” distribution of Zn.

Note: The requirement that we only consider z where FZ(z) is continuous is a technical condition, which
we can often ignore because we’ll be thinking about continuously distributed Z.

Note: The definition given above for convergence in distribution takes Zn to be a random (scalar) vari-
able to emphasize the idea, but the concept extends naturally to sequences of random vectors.

Note: Convergence in distribution is a weaker concept of convergence than convergence in probability:

one can show that if Zn
p→ Z then Zn

d→ Z, but the reverse is not true (except when Z is a constant).

The central limit theorem (CLT) is the most important application of the concept of convergence in
distribution. The CLT tells us that if we construct from the sample mean X̄n the a random variable
Zn =

√
n(X̄n − µ), then the sequence Zn converges in distribution to that of a normal random variable.

Theorem 2 (central limit theorem). If Xi are i.i.d random vectors and E[X ′iXi] <∞, then

√
n(X̄n − µ)

d→ N(0,Σ)

where Σ = V ar(Xi), µ = E[Xi], and 0 is a vector of zeros for each component of Xi.

The central limit theorem is quite remarkable. It says that whatever the distribution of Xi is, the limiting
distribution of X̄n (recentered by µ and rescaled by

√
n) will be a normal distribution. This striking

result will pave the way for us to perform inference on the expectation of a random variable, without
knowing its full distribution.

The practical value of the CLT is that it delivers an approximation to the distribution of X̄n. For
large n, we know that

√
n(X̄n − µ) has approximately the distribution N(0,Σ). Using properties of the

normal distribution, we can re-arrange this to say that X̄n ∼ N(µ,Σ/n), approximately. To get a good
guess of the distribution of X̄n, we only need to have estimates of µ and Σ, which is much easier than
estimating the full CDF of Xi from data.

Several important properties of convergence in probability and convergence in distribution that will be
used in analyzing linear regression, including the continuous mapping theorem and the delta method,
are described in Section B.6.

3.1.4 The continuous mapping theorem †

The last piece of statistical theory that we’ll need to understand the OLS linear regression estimator is
the continuous mapping theorem which let’s us apply the LLN or the CLT to pieces of an expression,
and then combine them to say something about the asymptotic behavior of the whole.
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Theorem 3 (continuous mapping theorem). Consider a sequence Zn of random vectors and a
continuous function h. Then:

• if Zn
p→ Z, then h(Zn)

p→ h(Z)

• if Zn
d→ Z, then h(Zn)

d→ h(Z)

Formally, what the CMT states is that the notions of convergence in probability and convergence in
distribution are preserved when we apply a continuous function to each random vector in a sequence Zn.

Examples: Suppose Zn
d→ Z and Yn

p→ c with c a constant. Then:

• Zn + Yn
d→ Z + c

• Zn · Yn d→ cZ

• Zn/Yn d→ Z/c if c 6= 0.

These expressions are referred to collectively as Slutsky’s Theorem, but they are really just applications
of the CMT. See Appendix B.6 for details.

3.2 The linear regression model

Note on notation: In this section we’ll simplify notation by dropping i subscripts when discussing
population quantities. We’ll add them back in Section 3.3 when we get to estimation. Remember that
with i.i.d. data, it doesn’t matter whether we include the i indices or not, because the distribution of
variables in each observation i is the same as the population distribution.

Given a random variable Y and a random vector X, the linear-regression model says that

Y = X ′β + ε (3.1)

where
E[ε|X] = 0 (3.2)

We’ll refer to the vector β appearing in Eq. (3.1) the coefficient vector from a regression of Y on X (as
a reminder of notation: β′X =

∑
j βj ·Xj). The term ε is often called an error term or residual.1

The linear regression model holds for some β if and only if the conditional expectation function of Y
on X is a linear function of X, that is:

E[Y |X] = X ′β (3.3)

In almost all cases in which we use the linear regression model, one of the components of X is taken to
be non-random and simply equal to one. It thus contributes a constant to the function X ′β, for example:

Y = β0 + β1 ·X1 + · · ·+ βk ·Xk + ε (3.4)

where here we have started the numbering at 0, so that β has k+ 1 components. In this notation X also
has k + 1 components: X = (1, X1, . . . Xk)′. However, to keep notation compact, we’ll often ignore the
distinction between a constant and random elements in X.

Accordingly, if we let k be the total number of components in X = (X1, X2, X3 . . . Xk)′ (including any
constant term), then notice that Eq. (3.2) implies the following k equations:

E[Xε] =




E[X1 · ε]
E[X2 · ε]

...
E[Xk · ε]


 =




E[X1 · (Y −X ′β)]
E[X2 · (Y −X ′β)]

...
E[Xk · (Y −X ′β)]


 =




0
0
...
0


 (3.5)

1The Hansen textbook reserves the term “residual” for an estimated value of ε that arises in the context of the ordinary
least squares estimator. I’ll refer to ε above as a residual, and what Hansen calls a residual a “fitted residual” in Sec. 3.3.
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To see that E[ε|X] = 0 implies E[ε ·Xj ] = 0 for any j = 1 . . . k, use the law of iterated expectations:

E[ε ·Xj ] = E {E[ε ·Xj |X]} = E {E[ε|X] ·Xj} = E {0 ·Xj} = 0

It’s probably a good idea to stare at this and make sure it makes sense. Conditional on any value
X = x, the component Xj has some fixed value xj . Thus, we can pull it out of the inner expectation, so
that E[ε ·Xj |X = x] = E[ε|X = x] ·xj . Then we take the outer expectation (curly braces) over values x.

3.2.1 Regression as least squares

We can also write the linear regression vector in a second way: it minimizes the population mean-squared
error between Y and a linear function of the components of X:

β = argmin
γ∈Rk

E[(Y −X ′γ)2] (3.6)

This says that the value of the β appearing in Eq. (3.1) is exactly the one that minimizes the expectation
of the squared difference between Y and the “regression line” X ′β implied by β and X. We’ll establish
Eq. (3.6) in Section 3.2.2.

Note that we are not constraining the values that γ can take in this minimization problem, rather we
have an unconstrained minimization in which we search over all γ ∈ Rk. That means that to minimize
the mean squared error, it must satisfy the following k first-order-conditions (FOCs), one for each of its
components βj for j = 1 . . . k:

∂E[(Y −X ′β)2]

∂βj
= E[2(Y −X ′β) ·Xj ] = 0 (3.7)

where we’ve used that X ′β =
∑k
j=1Xj ·βj . This is equivalent to E[Xj · ε] = 0, if we define ε = Y −X ′β.

This leads exactly to the linear regression model of Equations 3.1 and 3.5.

Thus we’ve seen that the minimizer of the mean squared error between Y and a linear function of X
must be equal to the regression coefficient vector β. The box at the end of Section 3.2.2 shows that this
also goes in the other direction: the β defined by Equations 3.1 and 3.5 must be the β that solves (3.6).

Note: I’ve assumed in the above that E[(Y −X ′γ)2] is differentiable with respect to γ and that we can
interchange the derivative and the expectation (this requires regularity conditions that allow us to appeal
to the dominated convergence theorem, but we don’t need to worry about these technicalities here).

3.2.2 The population regression vector β

Since the restrictions (3.5) implied by the linear regression model provide a system of k equations in the
k unknowns β1 . . . βk, it generally has a unique solution. A general expression for this solution is (see
box below):

β = E[XX ′]−1
E[X · Y ] (3.8)

From this expression it is clear that to define β we need the inverse matrix E[XX ′]−1 to exist, meaning
that the matrix E[XX ′] is invertible. A convenient characterization of when E[X ′X] will be invertible
is given by the following proposition:

Proposition 3.1. The matrix E[XX ′] has an inverse E[XX ′]−1, if and only if for all γ ∈ Rk:

P (X ′γ 6= 0) > 0

Proposition 3.1 says that there exists no value γ that makes X ′γ equal to the zero vector, with probability
one (remember that X here is a random vector). When there is such a γ, we say that there is perfect
multicollinearity among our regressions X = (X1, X2, . . . Xk).

Definition. We say that there is perfect multicollinearity among our regressors (in the population)
if there exists some γ ∈ Rk such that P (X ′γ = 0) = 1.

24



Example: Suppose that our regression includes a constant X1 = 1, a binary variable indicating that a
given individual is married: X2 = married, and a second binary variable X3 that indicates that a given
individual is not married. Then, since X = (1,married, 1 −married)′, we have that X ′(−1, 1, 1) = 0
for all realizations of X. Thus, we have perfect multicollinearity: X ′γ = 0 regardless of the value of
married and hence with probability one.

Review: using matrix inverses to solve a system of linear equations

Suppose we have a system of k equations in k variables

a11 · x1 + a21 · x2 + · · ·+ ak1 · xk = b1

a12 · x1 + a22 · x2 + · · ·+ ak2 · xk = b1

...

a1n · x1 + a2n · x2 + · · ·+ akk · xk = bk (3.9)

We seek a solution x = (x1, x2, . . . xn) that satisfies all of the above equations. Let us gather all
of the coefficients in to a k × k matrix and call it A:

A =




a11 a21 . . . an1

a21 a22 . . . an2

...
...

. . .
...

an1 an1 . . . ank




Our system of Equations (3.9) says, in vector notation, that Ax = b, where b = (b1, b2, . . . bk)′

is a vector composed of the values appearing on the RHS in Eq. (3.9).

If the matrix A is invertible, this means that there exists a unique matrix A−1 such that AA−1 =
A−1A = Ik, where Ik is the k × k identity matrix. It has entries of one along the diagonal and
zeros everywhere else:

In =




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1




Note that the identity matrix Ik has the property that Ikλ = λ for any vector λ ∈ Rn.

Thus, if we start with the equation Ax = b and multiply both sides by A−1, we get that

A−1(Ax) = (A−1A)x = Ikx = x = A−1b

Thus, we’ve shown that x must be equal to A−1b. This value definately satisfies (3.9), which we
can verify by:

A(A−1b) = (AA−1)b = Ikb = b

Also, it is the only value of x that satisfies the system (3.9). The solution exists and is unique,
provided that A−1 exists.

Furthermore, one can show that the x solving Ax = b is unique only if A is invertible. A is
invertible if and only if there exists no λ ∈ Rk that differs from the zero vector (i.e. it is not all
zeros), for which Aλ = 0 (here 0k is a vector composed of k zeros). Thus if A is not invertible,
there is such a vector λ. Suppose we have one solution x to Ax = b. Then x + αλ is another
solution, for any value of α, because A(x + αλ) = Ax + αAλ = b + 0k = bss.

Linear regression vs. linear projection When people talk about “running a regression”, the quan-
tity they are estimating is (3.8), whether or not the conditional expectation function E[Y |X] is
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actually linear in X as the linear regression model assumes. Thus, rather than Eqs. (3.1) and
(3.2) we could have gotten away with introducing β with a so-called linear projection model, which
just says that

Y = X ′β + ε where E[ε ·Xj ] = 0 for all j = 1 . . . k (3.10)

Whether one starts from Eq. (3.3) or from (3.10), we’re talking about the same β. We’ll call this
β, which has the explicit formula (3.8), the coefficient vector or the linear regression vector.

3.2.3 Regression in terms of covariances

We know the general formula (3.8) for the vector β, which involves inverting the matrix E[XX ′]−1 and
multiplying it by the vector E[XY ]. While the matrix formula holds generally, it turns out that we can
still write expressions for the individual components of β in terms of covariances and variances, which is
helpful in understanding the mechanics of how regression works.

Simple linear regression

When we just have a single regressor and a constant, we call this simple linear regression:

Y = β0 + β1 ·X + ε (3.11)

where X is a scalar. Note that this is really a k = 2 instance of regression, in which one regressor is a

constant and the other is a random variable. In this case the familiar expressions β1 = Cov(X,Y )
V ar(X) and

β0 = E[Y ]− β1 ·E[X] can be derived from 3.8, using the formula for the inverse of a 2× 2 matrix (this
is a fun exercise!).

Multiple regressors and a constant

This principle generalizes to the general setting in which we have a regression equation with a constant
and k additional regressors X1, X2, . . . Xk:

Y = β0 + β1 ·X1 + β2 ·X2 + . . . βk ·Xk + ε (3.12)

Note first that since one of our regressors is a constant, the system of equations (3.5) implies that
E[ε] = 0. Then the remainder of the equations in (3.5) can be read as saying that each Xj is uncorrelated

with the error, since Cov(Xj , ε) =���
��

E[Xj · Y ]−��
�

E[Xj ] ·E[Y ] = 0.

Proposition 3.2 (“regression anatomy” formula). The coefficient on Xj in regression (3.12) is

βj = Cov(X̃j , Y )/V ar(X̃j),

where X̃j is the residual from a regression of Xj on all of the other regressors and a constant.

The text Mostly Harmless Econometrics refers to Proposition 3.2 as the “regression anatomy” formula
because it allows us to translate the complicated expression for the full vector β = E[XX ′]−1

E[XY ] into
a simpler expression for each of the components βj .

Note: We’ll see when we get to estimation in Section 3.3 that Proposition 3.2 has a sample analog,
referred to as the Frisch-Waugh-Lovell theorem. Proposition 3.2 constitutes a “population version” of
this very useful result.

Note: A Corollary to Proposition 3.2 is that we can also write βj as Cov(X̃j , Ỹj)/V ar(X̃j), where we

define Ỹj to be the residual from a regression of Y on all the regressors aside from Xj , and a constant.

This follows because the difference between Y − Ỹj is uncorrelated with X̃j .
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3.3 The ordinary least squares (OLS) estimator†

Now let’s turn to estimation in the linear regression model. The standard estimator for β in the linear
regression model is referred to as the ordinary least squares (OLS) estimator β̂OLS . Since this is the

only estimator for β that we’ll consider, we’ll just write it as β̂, to avoid writing OLS over and over again.

To define the OLS estimator β̂ we suppose that we have a sample (Yi, X1i, X2i, . . . Xki) of Y and
some set of regressors X1 to Xk. Let n be the number of observations in our sample. Note: we will later
assume that our sample is i.i.d, but we don’t need to use that fact right now.

A simple way to define the OLS estimator β̂ = (β̂1, β̂2, . . . β̂k) is as the minimizer of the sample analog
of the least squares minimization, in which we replace the population expectation with the sample mean:

β̂ = argmin
γ∈Rk

1

n

n∑

i=1

(Yi −X ′iγ)2 (3.13)

Given the OLS estimator β̂, let us make the following definitions:

• The fitted value Ŷi for observation i is Ŷi = X ′iβ̂ =
∑k
j=1 β̂j ·Xji

• The fitted residual for observation i is ε̂i = Yi − Ŷi
• Note that for each i, we have that Yi = Ŷi + ε̂i (by definition)

Equation (3.13) explains the origin of the name “ordinary least squares”, as β̂ is defined as the value of
γ that minimizes the sample sum of squares.

What is the solution to the minimization problem (3.13)? Taking the first-order-condition with respect
to each γj , we obtain the following system of equations:

1

n

n∑

i=1

X1i · (Yi −X ′iβ̂) =
1

n

n∑

i=1

X1i · ε̂i = 0

1

n

n∑

i=1

X2i · (Yi −X ′iβ̂) =
1

n

n∑

i=1

X2i · ε̂i = 0

...

1

n

n∑

i=1

Xki · (Yi −X ′iβ̂) =
1

n

n∑

i=1

Xki · ε̂i = 0 (3.14)

which can be summarized by the matrix equation

1

n

n∑

i=1

Xi(Yi −X ′iβ̂) = 0

0 is a vector of k zeros. This is exactly analogous to Eq. (3.5), except that we have replaced the
population expectations E with sample averages 1

n

∑
i. Rearranging the above:

(
1

n

n∑

i=1

XiX
′
i

)
β̂ =

1

n

n∑

i=1

YiXi (3.15)

where recall that Xi = (X1i, X2i, . . . Xk)′ is a vector and Yi is a scalar for each i. Since Xi is k × 1 and
X ′i is 1 × k, XiX

′
i is a k × k matrix. In Equation 3.15 we’ve used that by the distributive property of

matrix multiplication, we can sum over the observations i and then multiply by β, which is equivalent
to multiplying and then summing the k × 1 vector XiX

′
iβ̂ over observations.
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We can obtain a more compact notation for Equation 3.15 by introducing an n × k matrix X, that
records all of our observations of all of the regressors:

X :=




X ′1
X ′2
...
X ′n


 =




(X11, X21, . . . Xk1)
(X12, X22, . . . Xk2)

...
(X1n, X2n, . . . Xkn)








︸ ︷︷ ︸
k columns

n rows

The matrix X is often called the design matrix.

Similiarly, we define a k × 1 vector of our observations of Y :

Y :=




Y1

Y2

...
Yn




In this notation, we can rewrite the matrix
(

1
n

∑n
i=1XiX

′
i

)
as 1

nX′X. We can then write 3.15 in the
compact form:

(X′X)β̂ = X′Y (3.16)

where we’ve multiplied both sides by n.
For Equation 3.16 to have a unique solution, we need for the k × k matrix X′X to be invertible (see

the box in Section 3.2.2 for a review of solving a sytem of linear equations). The following proposition
provides a characterization of when this will be the true:

Proposition 3.3. Provided that n > k, the matrix X′X is invertible if none of the columns of X can be
written as linear combinations of the other. That is: X ′γ 6= 0 for all γ ∈ Rk.

This condition can be referred to as no perfect multicollinearity in the sample. When it holds, we obtain
an explicit expression for the OLS estimator β̂:

β̂ = (X′X)−1X′Y (3.17)

More matrix notation:
Following the notation we’ve developed to define the OLS estimator, we can also define k × 1 vectors of
the fitted values Ŷi, the fitted residuals ε̂i, and the population residuals εi:

ê :=




ε̂1
ε̂2
...
ε̂n


 Ŷ :=




Ŷ1

Ŷ2

...

Ŷn


 ε :=




ε1
ε2
...
εn




While ê and Ŷ are built with estimates from the data, note that ε is not observable. However, under
the assumption that the regression model Yi = X ′iβ + εi holds for each i, we have that

Y = Xβ + ε (3.18)

Note that we can also write
Y = Xβ̂ + ê (3.19)

where Ŷ = Xβ̂.

3.3.1 The Frisch-Waugh-Lovell theorem*

Suppose we’re interested in just part of the vector β̂. That is, we separate our regressors X1 . . . Xk

into two groups, let’s say X1 . . . Xj and Xj+1 . . . Xk, for some j (this is without loss of generality since
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we could always re-order the indexing of the regressors). Our object of interest will be β̂1, where we
introduce the notation:

(
β̂1

β̂2

)
=







β̂1

β̂2

. . .

β̂j







β̂j+1

β̂j+2

. . .

β̂k







Analogously, define the matrices X1 and X2 as

X1 :=




(X11, X21, . . . Xj1)
(X12, X22, . . . Xj2)

...
(X1n, X2n, . . . Xjn)








︸ ︷︷ ︸
j columns

n rows and X2 :=




(Xj+1,1, Xj+2,1, . . . Xk1)
(Xj+1,2, Xj+1,2, . . . Xk2)

...
(Xj+1,n, Xj+2,n, . . . Xkn)








︸ ︷︷ ︸
(k − j) columns

n rows

where X1 is a matrix of observations of the regressors X1 . . . Xj and X2 is a matrix of observations of
the regressors Xj+1 . . . Xk.

Define n × n projector matrices P1 = X1(X′1X1)−1X′1 and P2 = X2(X′2X2)−1X′2, and corresponding
annihilator matrices M1 = In−P1 and M2 = In−P2. Note that by the same logic as Equation (??), the
matrix M1 annihilates X1 (that is, M1X1 = 0, where 0, is a set of j zeroes), and similarly M2X2 = 0,
where now 0, is a set of k − j zeroes

The matrix P1 projects vectors in R
n into the subspace spanned by the columns of X1, which are the

first j columns of X. The matrix M1 projects vectors in Rn into the subspace orthogonal to the columns
of X1. Similarly,P2 projects vectors in Rn into the subspace spanned by the columns of X2, which are
the last (k − j) columns of X.

With the matrices M1 and M2 in hand, we can now give an explicit formula for β̂1 and β̂2, known
famously as the Frisch-Waugh-Lovell theorem:

Proposition 3.4 (Frisch-Waugh-Lovell theorem).

β̂1 = (X′1M2X1)−1X′1M2Y

and
β̂2 = (X′2M1X2)−1X′2M1Y

Now let’s see how the Frisch-Waugh-Lovell theorem relates to the “regression anatomy” result Proposition
3.2. Since M2 is idempotent, we can write

β̂1 = (X′1M2M2X1)−1X′1M2Y = (X̃′1X̃1)−1X̃′1Y

where X̃1 := M2X1, and we’ve used that M2 is a symmetric matrix: M′
2 = M2. The n × k matrix

X̃1 := M2X1 collects the residuals from a series of j regressions: for each ` = 1 . . . j, column ` of X̃1 is
composed of the residuals from a regression of X` on Xj+1 . . . Xk.

An analogous formula applies for β̂2, where X̃2 collects the residuals from regressions of each X` on
X1 . . . . . . Xj , for ` = j + 1 . . . k. In the special case in which X2 has a single column (e.g. we’re inter-

ested only in β̂k, and we include a constant in the regression (e.g. X1 = 1), then we get exactly a sample
version of Proposition 3.2.

The Frisch-Waugh-Lovell theorem allows us to obtain an expression for each slope coefficient
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estimate β̂j in terms of sample variances and covariances. In particular:

β̂j =
Ĉov(ε̂j , Y )

V̂ ar(ε̂j)
(3.20)

where we let ε̂j denote the fitted residuals from a regression of Xj on all the other regressors and

a constant. This is an analog of the population residual X̃j from this same regression. Equation
(3.20) provides a “sample analog” to the regression anatomy formula: Proposition 3.2.

The operators Ĉov and V̂ ar appearing in Eq. (3.20) are defined as follows. Let A =
(A1, A2, . . . An) B = (B1, B2, . . . Bn) be n × 1 vectors composed of observations of a random
variable Ai and Bi, respectively. Let Ān = 1

n

∑n
i=1Ai be the sample mean of Ai, and similarly

for B̄n. Then, we define:

Ĉov(A,B) =

(
1

n

n∑

i=1

Ai ·Bi
)
− Ān · B̄n

and

V̂ ar(A) = Ĉov(A,B) =

(
1

n

n∑

i=1

A2
i

)
−
(
Ān
)2

As a special case of Eq. (3.20), we have that in simple linear regression

β̂1 =
Ĉov(X,Y )

V̂ ar(X)

where in this case ε̂ji is simply equal to Xi, the ith observation of our single regressor X. We
can work out the estimate of the constant β0 from the fact that the fitted residual ε̂i satisfies
1
n

∑n
i=1 ε̂i = 1

n

∑n
i=1(Yi − β̂0 − β̂1 ·Xi) = 0. β̂0 is thus β̂0 = Ȳn − β̂0 · X̄n.

3.3.2 A review of notation

Let’s review the notation that we’ve introduced in this section, because it can be confusing.

• We began with a random variable Y and a random vector X, which are related by Y = X ′β+ ε in
“the population”. The random vector X can be written X = (X1, X2, . . . Xk)′, where each Xj is a
different regressor. No i subscripts are necessary here.

• Then we draw a random sample, where observations are indexed by i = 1 . . . n. Yi is a random
variable reflecting the value of Y in the ith observation, and Xi assembles the value of all regressors
for observation i into a random vector: Xi = (X1i, X2i, . . . Xki)

′.

• When discussing the OLS estimator, it is convenient to assemble information across all of the
observations, leading to the n× 1 vector Y and the n× k matrix X.

Consider the following toy dataset, where n = 4 and k = 3. This reflects a realization of the random
matrix X and the random vector Y:

i X1 X2 X3 Y

1 1 4 0 23
2 1 3 1 54
3 1 2 1 21
4 1 6 0 77

The 4× 3 matrix framed by a large red box is X in our sample. The smaller green box inside indicates
X3 laid out as a row vector: the values of each of the three regressors in the third observation. The blue
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skinny rectangle indicates the n× 1 vector Y. Note that our first “regressor” X1 is simply one for each
observation, and contributes a constant to our regression. Regressor X3 is a binary or “dummy” random
variable: taking values of only zero or one for all obseravtions.

3.4 Statistical properties of the OLS estimator†

In this section we’ll see that the OLS estimator β̂ has many of the desirable properties introduced
in Section C.3. It is consistent for the true population regression coefficient vector β, and has an
asymptotically normal distribution. Knowing this will allow us to test hypotheses about the regression
vector β. We also show in this esction that OLS is an unbiased estimator of β, and is an efficient
estimator in a precise sense.

Recall from Section C.3 that when considering the performance of an estimator, we want to compare
it to the population parameter of interest, in this case β. How can we do this? Well, we know from
Equation (3.17) that β̂ is a function of our observations of the outcome Y, and our observations of the
regressor X. So we need some way to relate these observations to the population parameter of interest
β. Our model of Yi does exactly that. Recall that Equation 3.1 describes how our observations of Yi
can be written in terms of the coefficients β. Equation (3.18) provides an equivalent statement of this

in vector notation. Studying the statistical properties of β̂ thus begins with the following crucial step:
substitute our equation for Y (Eq. 3.18) into the definition of the estimator (Eq. 3.17):

β̂ = (X′X)−1X′Y

= (X′X)−1X′(Xβ + ε)

=���
��

(X′X)−1���X′Xβ + (X′X)−1X′ε

= β + (X′X)−1X′ε (3.21)

Eq. (3.21) is really quite remarkable: it says that regardless of whatever sample we ended up estimating

β̂ from, it is exactly equal to the true population parameter β, plus second term that depends on the
vector of residuals ε and the sample design matrix X.

We’ll now proceed in two steps. First, we’ll study the distribution of β̂ when our sample design matrix
is held fixed. This allows us to establish that conditional on X, the estimator β̂ is unbiased and efficient.
Then, we’ll consider the properties of β̂ as n gets very large.

Keep in mind what we’re doing in this section: we’re asking what the distribution of our estimator β̂ is,
given that the data in our sample was a random draw from an underlying population. This will allow us to
think about questions like: how likely would we be to get an estimate β̂ that is far from β, given that the
sample we use to compute β̂ is random (and thus could have been different that the one we actually see)?

3.4.1 Asymptotic properties of β̂

Some statistical properties of the OLS estimator β̂ hold in a finite sample, conditional on the sample X
that is drawn. These properties, unbiasedness and efficiency, are described in Chapter 7 of Statistics for
Econometrics.

Here we instead focus on properties of the OLS estimator as the sample size n gets very large. We’ll
first show that β̂ is a consistent estimator for β, and then that its sampling distribution is asymptotically
normal. For these results, we don’t need for the linear regression model with E[ε|X] = 0 to hold. The
large sample properties hold for the linear projection coefficient β even if the CEF of Y on X is not
linear. As before, we assume that we have an independent and identically distributed sample:

Assumption 1 (linear projection model and i.i.d sampling). (Yi, Xi) is an i.i.d. sample from the
model: Y = X ′β + ε with E[ε ·X] = 0.

To make claims that involve convergence in probability and convergence in distribution, we will consider
a sequence of estimators β̂, indexed by the sample size n. For each n = 1, . . . ,∞ along the sequence, we
assume that 1 holds. As a reminder (cf. Chapter B), in reality sample sizes never actually “grow” to
infinity. In practice, we always have an actual sample that has some actual finite size n. The idea of an
asymptotic sequence exists only to provide an approximation to the sampling distribution of β̂ given our
fixed n, which we will take to be accurate when the sample size is big enough.
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3.4.1.1 Consistency

We’ll first see that given the asymptotic sequence described above, β̂
p→ β. That is, β̂ is a consistent

estimator of β.
Subtracting β from each side of Equation 3.21:

β̂ − β = (X′X)−1X′ε =

(
1

n
X′X

)−1
1

n
X′ε

where in the second equality we’ve used that the factor of 1
n inside the matrix inverse cancels the one on

X′ε. Now let’s consider this latter quantity alone. Expanding out the matrix product:

1

n
X′ε =

1

n

n∑

i=1

Xiεi,

i.e. it is equal to the sample average of the random variable Xiεi. To see the above, note that 1
nX′ε is a

k × 1 vector, whose jth element is equal to the inner product between ε and the jth row of X′. The jth

row of X′ is equal to the jth column of X, which is comprised of the n observations of regressor Xj .

Thus, by the law of large numbers, we have that 1
nX′ε

p→ E[Xiεi], provided that E[Xiεi] < ∞. By
the linear projection model (Assumption 1), E[Xiεi] = 0, where 0 is a vector of k zeroes.

Similarly, we have by the law of large numbers that

1

n
X′X =

1

n

n∑

i=1

XiX
′
i
p→ E[XiX

′
i],

In Chapter B we only considered the LLN for random vectors, not random matrices like XiX
′
i. But since

you can always rewrite an n ×m matrix as a vector with n ·m elements, the LLN for vectors applies
so long as each element of the matrix E[XiX

′
i] is finite. In the box below, I state a set of assumptions,

“regularity conditions”, that ensure we can use the law of large numbers here, and that all expectations
that appear in this section exist.

Given that 1
nX′X

p→ E[XiX
′
i], the continuous mapping theorem implies that

(
1

n
X′X

)−1
p→ E[XiX

′
i]
−1

That’s because for a general invertible matrix M, the matrix inverse function M−1 is a continuous func-
tion of each of the elements of M.

Finally, by the continuous mapping theorem, we have that

β̂ − β = (X′X)−1X′ε =

(
1

n
X′X

)

︸ ︷︷ ︸
p→E[XiX′i]

−1
1

n
X′ε

︸ ︷︷ ︸
p→0

p→ E[XiX
′
i]
−10 = 0

Thus we have proved that β̂
p→ β.

Proposition 3.5. OLS is consistent for β given Assumption 1 and the regularity conditions 2 below.

Assumption 2 (regularity conditions for consistency). Suppose that:

1. E[Y 2
i ] is finite

2. E[||Xi||2] is finite

3. We have no perfect multicollinearity in the population: that is, E[XiX
′
i] is positive definite.
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3.4.1.2 Asymptotic normality*

Now let’s use the central limit theorem to derive the asymptotic distribution of the OLS estimator. Let
us pick up from the expression β̂−β = (X′X)−1X′ε. Knowing that the central limit theorem will involve
a factor of

√
n, let’s rewrite this as

√
n(β̂ − β) =

(
1

n
X′X

)−1

· √n
(

1

n
X′ε

)

Recall that E[Xiεi] = 0, where 0 is a vector of k zeroes, and that 1
nX′ε is the sample mean of the random

vector Xi · εi. Using the notation of Chapter B, let’s denote this as (Xε)n := 1
n

∑n
i=1Xi · εi. Then we

can write the above as:

√
n(β̂ − β) =

(
1

n
X′X

)−1

· √n
(

(Xε)n −E[Xiεi]
)

The rightmost factor in the above expression has exactly the form that we need to apply the CLT, in
particular: √

n
(

(Xε)n −E[Xiεi]
)

d→ N(0, V ar(Xiεi)),

Note that since E[Xiεi] = 0, we can write the variance as

V ar(Xiεi) = E[(Xiεi)(Xiεi)
′] = E[ε2iXiX

′
i] (3.22)

Now we use the Slutsky theorem

√
n(β̂ − β) =

(
1

n
X′X

)

︸ ︷︷ ︸
p→E[XiX′i]

−1

· √n
(

(Xε)n −E[Xiεi]
)

︸ ︷︷ ︸
d→E[ε2iXiX

′
i]

d→ E[XiX
′
i]
−1N(0,E[ε2iXiX

′
i])) (3.23)

That is,
√
n(β̂−β) converges in distribution to a random vector whose distribution is that of the matrix

E[XiX
′
i]
−1 times a normal vector with mean zero (for each component) and variance-covariance matrix

E[ε2iXiX
′
i].

The RHS of (3.23) is thus equal to a linear combination of normal random vectors. A property of
the normal distribution is the following. Let X ∼ N(µ,Σ) be a k-component random vector. Then for
any k × k matrix A:

A′X ∼ N(A′µ,A′ΣA))

(this can be seen as an example of the delta method, applied to a vector-valued function h). Thus, we
can write (3.23) as √

n(β̂ − β)
d→ N(0,V) (3.24)

where V := E[XiX
′
i]
−1
E[ε2iXiX

′
i]E[XiX

′
i]
−1. We refer to V as the asymptotic variance of the OLS

estimator.

A sufficient condition for us to be able to apply the CLT (see Section B.5) is that
E[(Xiεi)

′(Xiεi)] = E[ε2iX
′
iXi] be finite. This requires finite fourth moments of the data, rather

than the finite second moments assumed to prove consistency of OLS. To see why, note that for
any j and `:

E[ε2iXji·X`i] = E[(Yi−X ′iβ)2Xji·X`i] = E[Y 2
i ·XjiX`i]−2E[X ′iβ·Yi·Xji·X`i]+E[β′XiX

′
iβ·Xji·X`i]

which can be written out as a sum over expectations that each involve the product of four random
variables. To keep all such terms finite, Hansen assumes the following:

Assumption 3 (regularity conditions for asymptotic normality). Suppose that:

1. E[Y 4
i ] is finite

2. E[||Xi||4] is finite

3. We have no perfect multicollinearity in the population: that is, E[XiX
′
i] is positive definite.
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3.4.1.3 Estimating the asymptotic variance*

Equation 3.24 is not immediately useful, unless we know the asymptotic variance matrix V. Since we
don’t know V̂ before seeing the data, we will estimate it! In this section we see that we can construct

a consistent estimator V̂ such that V̂
p→ V. Doing this will open the door to hypothesis testing, which

we’ll consider in the next section.
Before seeing how hypothesis testing will work, let’s consider how to construct the estimator β̂ for

the asymptotic variance of OLS. Note that V = E[XiX
′
i]
−1
E[ε2iXiX

′
i]E[XiX

′
i]
−1 has a “sandwich” form:

it puts the matrix E[ε2iXiX
′
i] (the meat)2, between two instances of the matrix E[XiX

′
i]
−1 (the bread).

By the continuous mapping theorem, we can construct an estimator V by making a sandwich out of
consistent estimators for the meat and for the bread.

We’ve already seen that
(

1
nX′X

)−1
is a consistent estimator for the bread: E[XiX

′
i]
−1. An estimator

for the meat E[ε2iXiX
′
i] is not quite as obvious. It’s sample analog 1

n

∑n
i=1 ε

2
iXiX

′
i would definitely

work, but the true residuals εi are not observed. However, we can use the fitted residuals ε̂i, which are
a function of the observed data, instead. We can write this in matrix form as:

Ω̂ :=
1

n

n∑

i=1

ε̂2iXiX
′
i

One can verify that Ω̂
p→ E[ε2iXiX

′
i]. Thus, we can form a consistent variance estimator as

V̂HC0 :=

(
1

n
X′X

)−1

Ω̂

(
1

n
X′X

)−1

(3.25)

Eq. (3.25) is referred to as the “HC0” estimator of V, where HC stands for heterokedasticity consistent.

This name comes from the fact that V̂HC0 does not require the assumption of homoskedasticity ( that
V ar(εi|Xi) = σ2 for all i) to be a consistent estimator of V.

When you run a command like regress y x, robust in Stata, the default covariance estimator is the
so-called “HC1” estimator of V:

V̂HC1 :=
n

n− k

(
1

n
X′X

)−1

Ω̂

(
1

n
X′X

)−1

(3.26)

Note that the additional factor n
n−k will make very little difference when n is large compared with k,

and will make no difference in the asymptotic limit, since n
n−k → 1 as n → ∞. Applying this rescaling

however can be helpful when n is small. It’s easiest to understand the justification in the case of ho-
moskedasticity, which is left as an exercise (see box below).

Note: there are further estimators floating around, with names HC2, HC3, and HC4. These apply further
modifications to V̂HC0 (see the Hansen text for details). Other variance estimators exist for certain
violations of the i.i.d sampling assumption, including cluster-robust variance estimators for clustered
sampling and autocorrelation-consistent estimators for serially correlated panel data.

3.4.2 Inference on the regression vector β*

Given a consistent estimator of V like the HC0 or the HC1 estimator, we can transform the quantity√
n(β̂−β) into one whose limiting distribution is well-understood, and contains no unknown parameters.

This proves to be a much more useful result than Equation (3.24), because it allows us to test hypotheses

about the population regression vector β. In particular, if we pre-multiply
√
n(β̂ − β) by the matrix

V̂−1/2 (see box below for the definition of V̂−1/2):

Proposition 3.6. Given Assumption 1, the regularity conditions 3, and a V̂ such that V̂
p→ V:

√
nV̂−1/2(β̂ − β)

d→ N(0, Ik)

where Ik is the k × k identity matrix.

2Ideally plant-based meat :)
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The distribution N(0, Ik) is that of k standard normal random variables, each of which is independent
of the others (the variance-covariance matrix Ik has an entry of zero for each off-diagonal element). The
power of Proposition 3.6 lies in the fact that the distribution appearing on the RHS, N(0, Ik), contains
no unknown quantities. We know exactly the probability that it associates to any event. Thus, for large
n, we have a very good approximation to the distribution of

√
nV̂−1/2(β̂ − β). This provides the foun-

dation for us to quantify uncertainty in our estimates β̂ and test hypotheses about the regression vector β.

As a simple example of how the logic of Proposition 3.6 is useful, let’s consider a simple setting, which
turns out to be the most common one in practice: we are interested in the true value of a single regression
coefficient, say βj , in a regression that contains k regressors. A detailed discussion of hypothesis testing
in the linear regression model is omitted.

Note that we can write βj as e′jβ, where ej = (0, . . . , 1, . . . 0)′ is a k-component vector that puts a

one in position j, and zeros everywhere else. Similarly, e′j β̂ picks out the single component β̂j from the
OLS estimator. It then follows from Equation (3.24) and the Delta method that

√
n(β̂j − βj) = e′j

√
n(β̂j − βj) d→ e′jN(0,V) = N(e′j0, e

′
jVej) = N(0, Vjj)

where Vjj = e′jVej is the jth element along the diagonal of the matrix V.

This implies, analogously to Proposition 3.6, that

√
n · β̂j − βj√

V̂jj

d→ N(0, 1) (3.27)

where V̂jj is the jth element along the diagonal of the matrix V̂, which is a consistent estimator of Vjj .

Note that we could have written the LHS of Eq. (3.27) as
√
nV̂
−1/2
jj (β̂j − βj) as in Proposition 3.6, but

since V̂jj is a scalar we may take its conventional square root and divide by it.

We define the standard error for the estimate β̂j to be se(β̂j) :=
√

V̂jj/n. Note that the standard error is

a quantity that is computed from the data, given V̂ (it is an estimate, rather than a population quantity).

By Eq. (3.27), we know that the quantity (β̂j−βj)/se(β̂j) converges in distribution to a standard normal.

This allows us to test hypotheses about the value of βj , using our estimate β̂j and se(β̂j). Consider the
null hypothesis: H0 : βj = β0 for some value β0 (e.g. zero). Define the T-statistic for this hypothesis to
be

T (β0) =
β̂j − β0

se(β̂j)

If H0 is true, then we know that T (β0)
d→ N(0, 1). Recall from Section C.4.1 that the size of a hypothesis

test is the maximum probability of rejecting the null hypothesis, when the null hypothesis is in fact true.
We can form a test with size α in the following way:

reject H0 iff |T (β0)| > c

where c is a value such that the probability of a standard normal random variable having a magnitude
of at least c is less than α. To do this in a way that maximizes power, we choose c to be exactly the
1− α/2 quantile of the standard normal distribution: c = Φ−1(1− α/2).

3.5 Back to regression and causality

With our review of linear regression complete, let us now return to our motivation for studying it: as a
tool to estimate causal effects under selection-on-observables.

Recall from Section 2.2.3 that if we have a linear regression model (equivalently, a linear CEF as in
Eq. 2.2)

Yi = β0 + βDd+ β1x1 + β2x2 + · · ·+ βkxk + εi (3.28)
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then the coefficient βD yields the average treatment effect of D on Y , assuming selection-on-observables
holds. Given the results of the last section, we know how to estimate βD as well as perform statistical
inference on the parameter βD, to understand the role of random chance in the value of our estimator.
Thus, if the CEF is linear, we can implement statistical tests for the value of the average treatment
effect, since βD = ATE.

As mentioned in Section 2.2.3, assuming the linear form of Equation 3.28 is quite a strong assumption.
In principle, one can always get around this problem by making use of more flexible regression equations,
or nonparametric regression techniques. We’ll talk a little about these later in the course, but the
main drawback of nonparametric techniques is that they tend to require much more data to have much
statistical precision, compared with OLS. The remainder of this section reviews a specific situation in
which even though Equation may be (3.28), we can show that βD remains a weighted average of ATE(x)
over different values of the covariates X. This situation occurs when the treatment is binary and itself
has a CEF that is linear in the control variables.

3.5.1 Binary-treatment regressions that are “saturated” in controls*

Consider a regression of Y on a binary treatment variable D and X:

Y = βDD + β′XX + ε (3.29)

where the vector X is a set of indicator variables for an underlying categorical variable G. By this, I
mean that X = (1(G = 1),1(G = 2), . . . ,1(G = Ng))

′, where P (G ∈ {1, 2, . . . NG}) = 1. We’ll return to
this kind of regression later, which is sometimes referred to as “saturated” in controls. It turns out that
the coefficient on D in this regression can be written as:

βD =
E[{E[Yi|Di = 1, Xi]−E[Yi|Di = 0, Xi]} · V ar(Di|Xi)]

E[V ar(Di|Xi)]

If we assume selection-on-observables, then we know that the term in brackets is equal to ATE(x) =

E[Yi(1) − Yi(0)|Xi = x]. Then, we have that βD =
∑NG
j=1 wj · ATE(xj) where x1, x2, . . . are the values

that X can take, i.e. xj is a vector of NG components composed of all zeros but a 1 in the jth component.

The wj =
V ar(Di|Xi)·P (Xi=xj)

E[V ar(Di|Xi)] can be thought of as weights: they are positive and sum to one. This

result can be found in Angrist and Pischke (2008).

As an example where a saturated regression might occur, suppose we are conducting a returns-to-
schooling study and want to control for a student’s gender and their mother’s level of education:

Gi ∈{“male and mother graduated high school”︸ ︷︷ ︸
Group 1

, “male and mother didn’t graduate high school”︸ ︷︷ ︸
Group 2

,

“female and mother graduated high school”︸ ︷︷ ︸
Group 3

, “female and mother did not graduate high school”︸ ︷︷ ︸
Group 4

}

In this example, NG = 4, and the four values of Xi are map one-to-one with the four possible combina-
tions of two binary variables: one for gender, and one for mother’s high school completion.

An important property of a saturated set of controls is that it implies that E[Di|Xi] is linear in Xi. To
see this, note that since Xji = 1(Gi = j)

E[Di|Xi] =

NG∑

j=1

Xji · γj = X ′iγ

if we let γj = E[Di|Gi = j]. Cool!

To see this, we’ll apply the regression anatomy formula to get the coefficient βD:

ρ =
Cov(Yi, D̃i)

V ar(D̃i)
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where D̃i is the residual from a regression of Di on Xi. Since the conditional expectation of Di is linear
in Xi we know that D̃i = Di −E[Di|Xi]. Then:

βD =
Cov(Yi, (Di −E[Di|Xi]))

V ar(Di −E[Di|Xi])

Warning: this is about to get messy. Let σ2
D(x) denote the conditional variance of Di on Xi, i.e.

σ2
D(x) := E

[
(Di −E[Di|Xi])

2
∣∣Xi = x

]
. Noting that D̃i is mean zero and applying LIE to E[σ2

D(Xi)],
we have:

βD =
E[Yi(Di −E[Di|Xi])]

E[(Di −E[Di|Xi])2]
=
E {E[Yi(Di −E[Di|Xi])|Xi]}

E[σ2
D(Xi)]

Consider the numerator. Applying the LIE over Di:

E[Yi(Di −E[Di|Xi])|Xi] =
∑

d∈{0,1}
P (Di = d|Xi)E[Yi(Di −E[Di|Xi])|Di = d,Xi]

= P (Di = 1|Xi)E[Yi|Di = 1, Xi](1− P (Di = 1|Xi))

− P (Di = 0|Xi)E[Yi|Di = 0, Xi]P (Di = 1|Xi)

To simplify notation, let’s let p(Xi) = P (Di = 1|Xi) = E[Di|Xi]. Note that σ2
D(Xi) = p(Xi)(1−p(Xi)) =

P (Di = 1|Xi)P (Di = 0|Xi). Thus:

E[Yi(Di −E[Di|Xi])|Xi] = σ2
D(Xi) {E[Yi|Di = 1, Xi]−E[Yi|Di = 0, Xi]}

Thus, we’ve shown that

βD =
E[δ(Xi)σ

2
D(Xi)]

E[σ2
D(Xi)]

(3.30)

where δ(Xi) := E[Yi|Di = 1, Xi]−E[Yi|Di = 0, Xi]. We can think of δ(x) as a function that “matches”
treated (Di = 1) and control (Di = 0) units with the same value of Xi = x, and then conducts a simple
comparison between the treated and control means for that x.

3.5.2 Multi-valued treatment regressions that are saturated in controls*

Unfortunately, the result of the last section does not extend beyond the case of a binary treatment.
Consider for example a regression

Yi = β1D1i + β2D2i + β′XXi + εi (3.31)

where treatment takes on three possible values: 0,1,2, and D1 is an indicator that treatment takes value
1 and D2 is an indicator that treatment takes value 2. Assume that X includes a constant–therefore we
omit an indicator for category 0.

Goldsmith-Pinkham et al. (2021) show that even if E[D1i|Xi] and E[D2i|Xi] are each linear in X
(for example if X contains a fully-saturated set of controls), then β1 and β2 do not generally represent
weighted averages of their respective treatment effects. Specifically, if we let Yi(0), Yi(1), and Yi(2) denote
potential outcomes for each of the three treatments, β1 is not a weighted average of E[Yi(1)−Yi(0)|X = x]
across values of x, and β2 is not a weighted average of E[Yi(2) − Yi(0)|X = x]. Rather, β1 is generally
“contaminated” by the effects of the third treatment: it contains a second term that measures the
effect of treatment 2 versus treatment 0. Similarly, β1 is contaminated by the effects of treatment 1.
One way to avoid the contamination bias problem is to replace Equation (3.31) with a more flexible
regression equation that contains interactions between the treaments D1, D2 and the covariates X. See
Goldsmith-Pinkham et al. (2021) for details.
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Chapter 4

Instrumental variables

So far we’ve considered identification of causal effects under random assignment and more generally,
selection-on-observables. Selection on observables is a powerful assumption: if one has the right X
variables and controls for them carefully. But it is not always enough. In fact, it’s usually not: do
we really think we observe everything that we need to condition on to render treatment assignment
independent of potential outcomes?

One popular method to deal with settings in which we do not have selection-on-observables is the
use of instrumental variables (IV). You can think of IV as a method that let’s selection into treatment
depend on unobservables as well as observables. However, it also relies on strong assumptions. As we’ll
see, one of the cleanest examples where we can use IV is when we have a randomized experiment, but
treatment uptake is imperfect and non-random.

4.1 Basic intuition with homogeneous effects

Suppose we have a binary treatment and treatment effects are homogenous across units:

Yi(1)− Yi(0) = ∆

for some number ∆. We know from Section 1.6 that we can represent this with a regression equation

Yi = E[Yi(0)]︸ ︷︷ ︸
β0

+ ∆︸︷︷︸
β1

·Di + Yi(0)−E[Yi(0)]︸ ︷︷ ︸
εi

= β0 + β1Di + εi

where β1 = ∆, i.e. the slope coefficient on Di is equal to (common) treatment effect ∆.

Recall that we have a selection bias problem when E[Yi(0)|Di = 0] 6= E[Yi(0)|Di = 0], or equivalently
Cov(Di, Yi(0)) 6= 0. If this is true then Di is correlated with the error term εi.

Exercise: Show that Cov(Di, Yi(0)) 6= 0 if and only if Cov(Di, εi) 6= 0 in the above equation.

Recall that the linear regression model is built on the idea that E[εi|Di] = 0, which implies that
Cov(Di, εi) = 0. When this equality fails, OLS will not generally give consistent estimates of β1. We
refer to the situation Cov(Di, εi) = 0 as an endogeneity problem. When there is an endogeneity problem,
the treatment Di is often called endogenous, meaning (loosely speaking) that it is influenced by other
things that cannot be easily excluded from the model, because they are related to our outcome.

4.1.1 The simple math of a single IV

An endogeneity problem can also occur treatment is not binary, and is instead a multivalued or continuous
treatment. Suppose we have a general regression of the form:

Yi = β0 + β1Si + εi (4.1)
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where β1 is of interest but Cov(Si, εi) 6= 0 (note that this nests the case we started with if Si = Di). In
this case we say that the treatment Si is endogenous.

Suppose that we are able to find a third observable variable Zi, that unlike Si is uncorrelated with the
error term εi, i.e.

Cov(Zi, εi) = 0

Then notice that by substituting (4.1) and using linearity of the covariance operator:

Cov(Yi, Zi) = Cov(β0 + β1Si + εi) = 0 + β1 · Cov(Si, Zi) +��
���Cov(εi, Zi) = β1 · Cov(Si, Zi)

But Cov(Si, Zi) is observable! That means so long as it is non-zero, we can solve for β1 as:

β1 =
Cov(Yi, Zi)

Cov(Si, Zi)
(4.2)

This means that even in the presence of selection bias, we can overcome it to identify β1, provided that
we have a variable Zi that satisfies the two properties that we used:

1. Cov(Zi, εi) = 0. This is often referred to as instrument validity.

2. Cov(Zi, Si) 6= 0. This is often referred to as instrument relevance.

We’ll refer to Zi as an instrumental variable, and IV, or just an instrument for short.

4.1.2 Interpreting an IV though a causal graph

What kinds of variables might qualify as valid instruments? The first step is to find a variable Z for
which it’s at least plausible to believe that Z only influences Y through its effect on S. Otherwise, it
would hard to be sure that the covariance between Z and Y does not come from the same unobservables
that produce a correlation between S and ε.

The idea that Z only influences Y through S is called the IV exclusion restriction. Some people use
exclusion restriction synonymously with instrument validity, but really you should think of instrument
validity as comprising two assumptions: i) the exclusion restriction, ii) that Z is not statistically related
to unobserved confounders. This will be made explicit when we get to IV with heterogeneous effects.

To illustrate how the exclusion restriction can help us, consider the diagram in Figure 4.1. Here, the
variables Z, S and Y are observed, and we assume that the instrument Z has a causal effect of some
kind on S, indicated by the first solid arrow. The second solid arrow indicates the causal effect of S on
Y , which is the relationship we would like to measure.

SZ Y

U
Figure 4.1: A causal diagram depicting the logic of an IV.

Unfortunately, there are one or more unobserved confounders U , which influence both S and Y . Since
U is unobserved, the covariation between U and Y is captured by the error term ε in Equation 4.1.
Endogeneity, or Cov(Si, εi) 6= 0, occurs because U also affects S.

Intuitively speaking, if we “wiggle” Z, this wiggles S which wiggles Z. But since there is no arrow from
Z or S to U , this does not “wiggle” U . The variation in Y induced by variation in Z is free from the
confounding variation in U , and we can identify β1. This is awesome!

Note: By the way, if you’re interested in these types of causal diagrams, there is a whole literature that
uses them to study the identification of causal effects. The graphs are referred to formally as directed
acyclic graphs or DAGs. The directed part just means that the arrows have directions, and the acyclic
part that you cant have A causing B causing A causing B and so on, ad infinium. DAGs can be used
to reason about causality using a set of rules referred to as the “do-calculus”. A canonical text is Pearl
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(2009). In the context of Figure 4.1, the fact that U influences both S and Y creates a so-called backdoor
path from S to Y , generating an endogeneity problem. The DAG approach shows that we get identifica-
tion of the effect of S on Y using Z because the only backdoor paths from Z to Y go through S.

4.1.3 Example: the returns to schooling

To see the magic of an IV, let’s consider a particular application in which our treatment variable Si is
years of schooling, and we’re interested in identifying the causal effect β1 of increasing years of schooling
by one. We assume this relationship is linear, so that we can write

Yi = β0 + β1Si + εi (4.3)

where Yi is log earnings. However, Cov(Si, εi) 6= 0, because earnings are also determined by “ability” Ai
(e.g. measured by a standardized test), which is unobserved in our data (therefore, we cannot pursue a
selection-on-observables strategy using Ai as a control variable). While years of schooling serves as S in
Figure 4.1, ability A serves as the unobserved confounder A.

To make everything simple, we can suppose that the relationship between A and ε is also linear, i.e.
that

εi = γAi + νi

for some coefficient γ and νi that is uncorrelated with both Ai and Si and represents an error term in
the relationship between A and ε. Given this, we can rewrite Eq. (4.3) as:

Yi = β0 + β1 + γAi + νi

which makes clear that if we did in fact observe ability Ai, we could estimate β1 through multiple linear
regression of Y on A and S, using A as a control variable.

Now suppose we have an instrument Zi that provides an incentive for students to attend an additional
year of schooling. For example, it could be a scholarship for university that is allocated to some students
and not to others. If the scholarship Zi is uncorrelated with ability Ai, then we have a valid IV, since
then:

Cov(Zi, εi) = γ · Cov(Zi, Ai) + Cov(Zi, νi) = γ · 0 + 0 = 0

The instrument is relevant provided that it actually works in incentivizing some students to increase
their years of schooling, i.e. Cov(Zi, Si) 6= 0.

4.1.4 IV as a ratio of two regression coefficients

Recall from Equation 4.2 that if we have a valid IV for S in model (4.1), we can identify it through the
quantity:

β1 =
Cov(Yi, Zi)

Cov(Si, Zi)

which is estimable from data on (Y, S, Z).

Note that we could rewrite this as

β1 =
Cov(Yi, Zi)

V ar(Zi)
· V ar(Zi)

Cov(Si, Zi)

i.e., the coefficient from a simple linear regression of Y on Z, divided by the coefficient from a simple linear
regression of S on Z. The first of these regressions is often referred to as the reduced-form regression:

Yi = ρ0 + ρ1Zi + ui (4.4)

The regression coefficient that ρ is divided by is that of the so-called first-stage regression:

Si = π0 + π1Zi + Vi (4.5)

With this notation, β1 = ρ1/π1. We can make sense of this as follows. When we “wiggle” the instrument
Z, this wiggles S by π1, and each wiggle of S wiggles Y by β1. Thus, each wiggle of Z is associated with
ρ1 = π1 ·β1 wiggles of Y . To determine β1, we thus need to divide the reduced-form regression coefficient
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SZ Y

U

β1π1

Figure 4.2: If we let ρ denote the coefficient from a regression of Y on Z, then β1 = ρ1/π1.

ρ1 by the first-stage regression coefficient π1. This is depicted in terms of the causal graph from Section
4.1.2 Figure 4.2.

Note finally that if the instrument is a binary variable, then both the reduced-form and first-stage
coefficients take the form of differences is means, and

β1 =
E[Yi|Zi = 1]−E[Yi|Zi = 0]

E[Si|Zi = 1]−E[Si|Zi = 0]
(4.6)

This expression is often referred to as a Wald ratio. With a binary instrument, one does not even need to
run any regressions to implement IV: β1 is identified just from computing four conditional expectations.
In practice however, we want standard errors, and a regression type-framework will be a convenient way
to get them. This leads to the so=called two stage-least squares estimator, which generalizes the idea of
estimating β1 = ρ/π by applying OLS to both the first-stage and the reduced-form regressions in turn.

4.2 IV with heterogeneous treatment effects

4.2.1 Identifying the ATE when there is no selection on gains

Our introduction to instrumental variable in Section 4.1 has focused on a setting with homogeneous
treatment effects, so that we can write Yi = β0 + β1Si + εi where the parameter of interest is β1 (in a
setting with binary treatment Di, we can let Si = Di and then β1 is equal to the treatment effect).

In most practical applications however, the assumption that every individual i has the same treat-
ment effect is pretty unrealistic. After all, we only have to worry about endogoneiety/selection bias
because Yi(0) differs between individuals (otherwise, it would have to be the case that E[Yi(0)|Di = 1] =
E[Yi(0)|Di = 0], since Yi(0) would be a degenerate random variable).

Fortunately, the results of the last section generalize nicely provided that there is no “selection on
gains”: that is, treatment effects are not correlated with treatment status.

Definition 4.1. With a binary treatment Di, we say that no selection on gains (NSOG) is satisfied
if E[∆i|Di = 1] = E[∆i|Di = 0], where ∆i = Yi(1) − Yi(0). More generally, with treatment variable Si
with support S, we say NSOG holds if E[∆i|Si = s] is the same for all values s ∈ S.

Let us consider a binary treatment, and further assume that E[∆i|Di = d, Zi = z] = E[∆i|Di = d]. This
is a natural assumption given the exclusion restriction depicted in Figure 4.1. Since Z only influences Y
via D, knowing the value of Z does not change our expectations about potential outcomes once we’ve
fixed a value of d. Thus altogether, NSOG and this exclusion assumption imply that

E[∆i|Di = d, Zi = z] = ∆,

for all d and z, where we let ∆ = E[∆i|Di = 1] = E[∆i|Di = 0]. Notice that ∆ is also equal to the
average treatment effect.

Now to see how NSOG helps, let us generate an equation for the realized value of Yi as before, but now
allowing treatment effect heterogeneity:

Yi = Yi(0) + ∆i ·Di

= Yi(0) + ∆ ·Di +Di · (∆i −∆)

= E[Yi(0)]︸ ︷︷ ︸
β0

+ ∆︸︷︷︸
β1

·Di + Yi(0)−E[Yi(0)] +Di · (∆i −∆)︸ ︷︷ ︸
εi

= β0 + β1Di + εi
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Now consider an instrument Zi such that Cov(Zi, Yi(0)) = 0. By NSOG, E[Di · (∆i − ∆)] = E[Di] ·
E[∆i −∆] = 0, and hence

Cov(Zi, εi) = E[Zi ·Di · (∆i −∆)]

=
∑

d,z

P (Di = d, Zi = z) · z · d · (E[∆i|Di = d, Zi = z]−∆)

= P (Di = 1, Zi = 1) · 1 · (E[∆i|Di = 1, Zi = 1]−∆)

= P (Di = 1, Zi = 1) · 1 · (∆−∆) = 0

where we have used the additional “exclusion restriction” assumption that E[∆i|Di = d, Zi = z] =
E[∆i|Di = d].

We have thus shown that Cov(Zi, εi) = 0 even in this extended model with heterogeneous treatment
effects (and NSOG), in which εi captures heterogeneity both in Yi(0) and in treatment effects ∆i. Thus,

in this setting the IV estimand β1 = Cov(Yi,Zi)
Cov(Di,Zi)

from Eq (4.2) identifies the average treatment effect.

For a generalization of this argument to the case of a multi-valued or continuous treatment, see Kolesár
(2013), who refers to NSOG as “constant average treatment effects”.

4.2.2 The local average treatment effects (LATE) model

The last section showed how our results that assume homogenous treatment effects generalize to a setting
with no selection on gains (NSOG): when NSOG holds the IV estimand captures the average treatment
effect. However, NSOG can itself be a strong assumption. For example, individual’s may be inclined to
choose the value of the value of treatment that benefits them the most (this kind of behavior is often
referred to as a Roy model). In it’s simplest form, a Roy model says that agents select into whichever
value of treatment maximizes their outcome, the same outcome that we as a researcher are interested
in. In this case, we would have

Di = 1(Yi(1) ≥ Yi(0)) = 1(∆i ≥ 0)

In this model, there’s no way that NSOG would hold, because ∆i will be negative for all untreated
individuals, and positive for all treated individuals, thuse Cov(∆i, Di) > 0. One can extend the Roy
model to allow idiosyncratic noise to individual’s choices, e.g. 1(∆i ≥ Ui) where Ui varies by individual.
But the message is the same: NSOG is a restrictive assumption for settings in which individual’s self
select into treatment. Can we relax our assumptions even further, to allow for individuals to select on
their individual gains?

The answer is yes, and in seeing this we encounter the canonical “local average treatment effects”
framework for IV introduced by Imbens and Angrist (1994). The LATE model provides a key result
for the interpretation of IV estimates. In particular, it shows that under very minimal assumptions,
we can understand instrumental variables as telling us about treatment effects for a certain subset of
the population of interest, whose value of treatment is responsive to the value of the IV. We call these
individuals “compliers”, and the main result is that IV identifies the “local” average treatment effect,
just among these compliers.

To present the LATE model, it is helpful to use the language of a randomized controlled trial in which
there is imperfect take-up of the treatment. In this setting, both the treatment and the instrument are
binary, taking values of 0 or 1. As before, those with Di = 1 are “treated” and those with Di = 0 are
“untreated”, representing a control group. Those with Zi = 1 are “assigned” to the treatment arm of
the experiment, and those with Zi = 0 are instead “assigned” to the control arm. While this language is
motivated by a true experiment in which some randomization device is used to actually assign individuals
to treatment or control, we also use this language in non-experimental settings. The reason for this is
that the underlying assumptions made in a clinical trial (in which not all individuals who are assigned
to treatment actually become treated) are sometimes plausible in non-experimental settings as well.

For example suppose some students are offered a scholarship that will pay for their university tuition,
indicated by Zi = 1, and selection for the scholarship is random. Those individuals who are not offered
the scholarship instead have Zi = 0. However, not all individuals who are offered the scholarship end up
going to university. We let Di = 1 indicate that i goes to university, and Di = 0 if they do not. Since
not all scholarship recipients go to university, we have that P (Di = 0|Zi = 1) > 0. On the other hand,
many students enroll in university even without the scholarship, so that P (Di = 01|Zi = 0) > 0 as well.

To make sense of these patterns of behavior, let us introduce the notion of potential treatments Di(z).
Recall that potential outcomes Yi(d) say what value our outcome variable Y would take for individual i if
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their treatment status were d ∈ {0, 1}. Potential treatments tell us what value our treatment variable Di

would take if their instrument value were equal to z. We can make sense of this notation through Figure
4.1: Z has a causal effect on the treatment S or D, which in turn has a causal effect on Y . Potential
treatments are simply potential outcomes for the first arrow from the instrument to the treatment. An
individual’s actual, or realized treatment Di is related to their assigned value of Zi through Di = Di(Zi).

To formalize our notion that Z only affects Y through D, let us extend out potential outcomes no-
tation to Yi(d, z), which says what the value of Y would be for individual i if their treatment value were
d and their instrument value were z. We’ll assume that Yi(d, z) does not depend on z, in which case we
can use the simpler notation Yi(d) as before.

For each z, Di(z) is either equal to zero or is equal to one. Thus, there are four conceivable groups
within the population, which we will refer to as “selection groups”. The four selection groups are given
in the table below. The first group in this table, the “never-takers”, do not go to university if they do

Name Meaning
“never-takers” Di(0) = 0 & Di(1) = 0
“always-takers” Di(0) = 1 & Di(1) = 1
“compliers” Di(0) = 0 & Di(1) = 1

((((“defiers”
((((

((((
(((

Di(0) = 1 & Di(1) = 0

not get the scholarship, and they still do not attend university even if they are offered the scholarship.
“Always-takers”, on the other hand, go to university even if they do not get the scholarship. “Compliers”
go to university only if they receive the scholarship, i.e. Di(0) = 0 and Di(1) = 1. Finally, one group
in the table is crossed out: “defiers” would only go to university of they did not receive a scholarship,
and would not go if they did receive the scholarship (i.e. Di(0) = 1 and Di(1) = 0). The LATE model
assumes that there are no such defiers. This seems like a fairly innocuous assumption in the context of
our hypothetical scholarship program: who would go to university only if it were not made cheaper for
them?

Note that in the context of a true clinical trial, we might also be willing to rule out always-takers. If
an experiment is testing a new drug that is only available through the experiment, there would not be
any individuals who managed to be treated when not assigned to the treatment arm of the study (since
they can’t obtain the drug any other way). However, always-takers are an important segment of the
population in most non-experimental settings, and the LATE model allows them to be present.

Given the potential-treatments notation, the LATE model assumptions are:

1. IV Independence: (Yi(d, z), Di(z)) ⊥ Zi for all d, z

2. Exclusion: Yi(d, z) = Yi(d) for all d, z

3. Monotonicity: Di(1) ≥ Di(0)

4. Relevance: P (Di(1) > Di(0)) > 0

The independence assumption says that the instrument Z is as good as randomly assigned, in the sense
that it is statistically independent of both potential outcomes and potential treatments. Exclusion states
Yi(d, z) doesn’t change with z if d is held fixed, reflecting the idea that Z only effects Y through D. We
can combine Assumptions 1 and 2 to write

(Yi(0), Yi(1), Di(0), Di(1)) ⊥ Zi

and think of this as our instrument validity assumption. The fourth condition says that a positive pro-
portion of the population are compliers, and plays the role of the instrument relevance condition from
Section 4.1. Note that Di(1) > Di(0) is the same as Di(0) = 0, Di(1) = 1, which indicates that i is a
complier.

Our final assumption, “monotonicity”, is a new one that we did not need in the homogenous effects
or NSOG models. It states that the causal effect of the instrument on treatment status is to move all
units weakly in the same direction. That is, we can’t have some individual i for whom Di(0) = 0 and
Di(1) = 1, and some other individual j for whom Dj(0) = 1 and Dj(1) = 0. These latter individuals
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would be “defiers”, and we rule them out by assumption. Note that the direction of the weak inequality
in Assumption 3 is arbitrary. If the instrument taking a value of one were to move all units out of
treatment or not at all (i.e. there are defiers but no compliers), we could simply redefine the instrument
by swapping the labels of z = 0 and z = 1. What’s important is that there are not two-way flows, both
into and out of treatment, when it is moved from one value to the other.

The famous result of Imbens and Angrist (1994) is that under the LATE assumptions 1-3, the Wald
ratio of Eq. (4.6) identifies the average treatment effect among the compliers, often referred to as “the
LATE”:

E[Yi|Zi = 1]−E[Yi|Zi = 0]

E[Di|Zi = 1]−E[Di|Zi = 0]
= E[∆i|Di(1) > Di(0)] (4.7)

where ∆i = Yi(1)−Yi(0) and note that the eventDi(1) > Di(0) is the same asDi(0) = 0, Di(1) = 1, which
indicates that i is a complier. Note that the expression above is also equal to Cov(Yi, Zi)/Cov(Di, Zi).
Thus the expression that gives the LATE coincides with our expression for β1, the average treatment
effect under NSOG, and the common treatment effect when treatment effects are fully homogenous.

What if monotonicity does not hold? You might be curious how robust the LATE theorem is to
departures from the important assumption of monotonicity—“no defiers”. We know from Section
4.2.1 that if we have treatment effect heterogeneity but no selection on gains, the LHS of Eq.
(4.7) captures the ATE, even if there are defiers. This includes homogenous treatment effects as
a special case, in which the LHS of Eq. (4.7) captures the homogenous treatment effect.

But is there any thing we can say if treatment effects are heterogenous and we have selection on
gains? Chaisemartin (2017) shows that the answer is yes, under a more general assumption he
calls the “compliers-defiers” assumption. I will not state the general complier-defiers assumption
here, but will just give you my favorite sufficient condition for it. If for any value y there are
more compliers having treatment effect y then there are defiers having treatment effect y, i.e.
P (i is complier|∆i = y) ≥ P (i is defier|∆i = y), then the LHS of Eq. (4.7) captures a local
average treatment effect among a subgroup of the compliers, whose size is P (i is complier) −
P (i is defier). This suggests that if there are some defiers in the population, but not too many, we
can still interpret the IV estimand as an average treatment effect among the “surviving compliers”
within this subgroup.

Proof of the LATE theorem

We will now see why Eq. (4.7) holds, proceeding in several steps. Let us denote pn = P (i is a never-taker),
pa = P (i is an always-taker), and pc = P (i is a complier). Denote the relative proportions of the three
selection groups in our population. By monotonicity, we know that pd = P (i is a defier) = 0 and so
pn + pa + pc = 1.

Note thatDi(1) andDi(0) are each random variables, and by the independence assumption P (Di(0) =
d,Di(1) = d′|Zi = z) doesn’t depend on z, for any values d, d′ ∈ {0, 1}. With this in mind, consider the
quantity E[Di|Zi = 1]. By independence and then the law of iterated expectations over both Di(1) and
Di(0):

E[Di|Zi = 1] = E[Di(1)|Zi = 1] = E[Di(1)] (4.8)

= pn ·E[Di|Di(0) = Di(1) = 0] + pa ·E[Di|Di(0) = Di(1) = 1]

+ pc ·E[Di|Di(1) = 1, Di(0) = 0]

= pn ·E[Di(1)|Di(0) = Di(1) = 0] + pa ·E[Di(1)|Di(0) = Di(1) = 1]

+ pc ·E[Di(1)|Di(1) = 1, Di(0) = 0]

= pn · 0 + pa · 1 + pc · 1
= pa + pc (4.9)

In the second equation, we have used that Di = Di(Zi), and then independence to remove the condi-
tioning on Zi. We can see from the above that the share of individuals that go to university, among
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those offered the scholarship, tells us the proportion of the population that are either always-takers or
are compliers. By similar steps:

E[Di|Zi = 0] = E[Di(0)|Zi = 0] = E[Di(0)] (4.10)

(4.11)

= pn ·E[Di|Di(0) = Di(1) = 0] + pa ·E[Di|Di(0) = Di(1) = 1]

+ pc ·E[Di|Di(1) = 1, Di(0) = 0]

= pn ·E[Di(0)|Di(0) = Di(1) = 0] + pa ·E[Di(0)|Di(0) = Di(1) = 1]

+ pc ·E[Di(0)|Di(1) = 1, Di(0) = 0]

= pn · 0 + pa · 1 + pc · 0
= pa (4.12)

Taking the difference between (4.9) and (4.12), we see that we can identify the share of compliers in the
population:

E[Di|Zi = 1]−E[Di|Zi = 0] = pc (4.13)

We’ll now use an analgous set of steps to show that the numerator of Eq. (4.7) is equal to pc·E[∆i|Di(1) >
Di(0)], thus establishing the result provided that pc > 0 (Assumption 4).

Consider the quantity E[Yi|Zi = 1]. By the law of iterated expectations and then independence:

E[Yi|Zi = 1] = pn ·E[Yi|Zi = 1, Di(0) = 0, Di(1) = 0]

+ pa ·E[Yi|Zi = 1, Di(0) = 1, Di(1) = 1]

+ pc ·E[Yi|Zi = 1, Di(0) = 0, Di(1) = 1]

Now, having conditioned on Zi as well as a unit’s potential treatments, we know their realized treatment
Di = Di(Zi), and hence which potential outcome we are observing in Yi:

E[Yi|Zi = 1] = pn ·E[Yi(0)|Zi = 1, Di(0) = 0, Di(1) = 0]

+ pa ·E[Yi(1)|Zi = 1, Di(0) = 1, Di(1) = 1]

+ pc ·E[Yi(1)|Zi = 1, Di(0) = 0, Di(1) = 1]

The great thing about having replaced the Yi’s by the corresponding potential outcomes is that the
potential outcomes themselves are independent of the instrument Zi, so we can drop the conditioning
on Zi, as before when we were considering E[Di|Zi = 1].1 Thus:

E[Yi|Zi = 1] = pn ·E[Yi(0)|Di(0) = 0, Di(1) = 0]

+ pa ·E[Yi(1)|Di(0) = 1, Di(1) = 1]

+ pc ·E[Yi(1)|Di(0) = 0, Di(1) = 1] (4.14)

Now following the same logic for E[Yi|Zi = 0]

E[Yi|Zi = 0] = pn ·E[Yi(0)|Zi = 0, Di(0) = 0, Di(1) = 0]

+ pa ·E[Yi(1)|Zi = 0, Di(0) = 1, Di(1) = 1]

+ pc ·E[Yi(0)|Zi = 0, Di(0) = 0, Di(1) = 1]

= pn ·E[Yi(0)|Di(0) = 0, Di(1) = 0]

+ pa ·E[Yi(1)|Di(0) = 1, Di(1) = 1]

+ pc ·E[Yi(0)|Di(0) = 0, Di(1) = 1] (4.15)

1Consider a term E[Yi(d)|Zi = z,Di(0) = d,Di(1) = d∗] with specific values of d, z and z∗. Really what we’re using is
the joint independence condition (Yi(d), Di(0), Di(1)) ⊥ Zi. Assume for simplicity that Yi(d) has discrete support. Then
E[Yi(d)|Zi = z,Di(0) = d,Di(1) = d∗] can be written as∑

y

yP (Yi(d) = y|Zi = z,Di(0) = d,Di(1) = d∗) =
∑
y

y
P (Yi(d) = y, Zi = z,Di(0) = d,Di(1) = d∗)

P (Zi = z,Di(0) = d,Di(1) = d∗)

By the independence condition this is equal to∑
y

y�
���P (Zi = z)P (Yi(d) = y,Di(0) = d,Di(1) = d∗)

���
�

P (Zi = z)P (Di(0) = d,Di(1) = d∗)
=
∑
y

yP (Yi(d) = y|Di(0) = d,Di(1) = d∗) = E[Yi(d)|Di(0) = d,Di(1) = d∗]
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The always-taker and never-taker terms cancel out when we consider the difference between (4.14) and
(4.15), but the compliers term remains:

E[Yi|Zi = 1]−E[Yi|Zi = 0] = pc (E[Yi(1)|Di(0) = 0, Di(1) = 1]−E[Yi(0)|Di(0) = 0, Di(1) = 1])

= pc ·E[Yi(1)− Yi(0)|Di(0) = 0, Di(1) = 1]

This establishes Eq. 4.7.

4.2.3 Covariates and characterizing the complier population†

We’ve seen from Eq. (4.13) that we can count how many compliers pc there are in the population, since
pcE[Di|Zi = 1] − E[Di|Zi = 0] and the RHS is identified. However, we can’t say exactly who those
compliers are. Because of the fundamental problem of causal inference, we only see Di(0) or Di(1) for a
given individual (depending on their value of Zi), and never both. Since the LATE result tells us that
IV only identifies the average treatment effect among compliers (and not the whole population), under-
standing who the compliers are would be very useful in making sense of whether they are representative
of the population as a whole, rather than being some kind of special group that is not that interesting.

It turns out that there is more we can say about the compliers in the LATE model, if we have covariates
Xi at our disposal. In particular, we can estimate average complier characteristics E[Xi|Di(1) > Di(0)].
These can then be compared with e.g. E[Xi] to assess how different the compliers are from the population
as a whole, along the dimensions captured by Xi.

For this result, we need to augment the LATE model with a conditional independence assumption,
rather than the unconditional independence assumption in Section 4.2.2:

Conditional IV independence: {(Yi(d), Di(z)) ⊥ Zi} |Xi for all d, z.

Conditional independence is a natural assumption if we have a randomly assigned instrument, and Xi is a
collection of baseline characteristics Xi that are not themselves affected by treatment (e.g. age). If on the
other hand Xi is affected by treatment, it could represent a “bad-control” and {(Yi(d), Di(z)) ⊥ Zi} |Xi

may fail even if (Yi(d), Di(z)) ⊥ Zi holds.2

Another context in which we might have conditional IV independence is when treatment assignment
Zi is not unconditionally independent of potential outcomes/potential treatments, but is instead random
only when conditioning on the Xi. This is what we would expect in a stratified randomized controlled
trial (RCT), in which the probability of Zi = 1 may differ between strata Xi = x, but is random within
each one.

Abadie (2003) shows that in the LATE model with conditional independence:

E[Xi|Di(1) > Di(0)] = E[κi ·Xi]/E[κi] where κi = 1− Di · 1(Zi = 0)

P (Zi = 0|Xi)
− (1−Di) · 1(Zi = 1)

P (Zi = 1|Xi)

This result shows that the complier-mean of covariate Xi can be estimated so long as we can estimate the
quantity κi for each i. This in turn requires estimating P (Zi = 1|Xi = x), the conditional propensity of
treatment assignment among individuals with Xi = x. In a stratified RCT, this quantity may be known
ex-ante based on the experimental procedure (e.g. men are assigned to treatment with probability 0.4
and women are assigned to treatment with probability 0.7). In most non-experimental applications, it
would have to be estimated from the data, but it is identified given an i.i.d sample of (Yi, Di, Zi, Xi).

Another application of conditional IV independence is to perform heterogeneity analysis on the LATE.
Conditioning all of the expectations in Eq. (4.6) on Xi = x, we can identify a conditional LATE

E[∆i|Di(1) > Di(0), Xi = x] =
E[Yi|Zi = 1, Xi = x]−E[Yi|Zi = 0, Xi = x]

E[Di|Zi = 1, Xi = x]−E[Di|Zi = 0, Xi = x]
(4.16)

among those individuals who have observable characteristics Xi = x, and are also compliers.

2In the presence of covariates Xi we mantain our other assumptions 2-4 from Section 4.2.2 also conditional on Xi.
In particular, this requires for the direction of “compliance” to be the same for all values of Xi, i.e. we can’t have
P (Di(1) ≥ Di(0)|Xi = x) = 1 for some value x while P (Di(1) ≤ Di(0)|Xi = x) = 1 for some other value x′. Our relevance
assumption will also be strengthened to 0 < P (Zi = 1|Xi) < 1 with probability one, an analog of the common support
condition introduced in the context of selection-on-observables. See Abadie (2003) for details.
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4.2.4 Connection to latent-index models*

To get the LATE theorem, we have made assumptions about potential outcomes/treatments and their
distributions, but we haven’t committed to an explicit model of how these outcomes come about. An
alternative/complimentary approach might characterize the selection process by constructing a “struc-
tural” model of who chooses treatment.

For instance, we might think that each unit i is a utility-maximizing agent who’s utility is

ui =

{
γ0 + γ1Zi if they receive treatment (i.e. Di = 1)

Ui if they don’t (i.e. Di = 0)

Agents will choose treatment when it gives them higher utility, and so they will choose:

Di = 1(γ0 + γ1Zi > Ui)

where we’ve assumed that ties go to non-treatment.
In this model, heterogeneity among Di comes from agent’s having different values of the instrument,

as well as a different “random utility” Ui in the non-treatment state. If γ1 is positive, the instrument
incents individuals towards treatment, since:

Di(0) = 1(γ0 > Ui) and Di(1) = 1(γ0 + γ1 > Ui)

so the monotonicity condition is immediately satisfied: Di(1) ≥ Di(0). If γ1 were negative, we’d have
monotonicity in the other direction.

An important result of Vytlacil (2002) establishes that the LATE model is in fact equivalent to a
latent-index model of treatment along with standard IV assumptions. In other words, whenever you are
willing to accept that monotonicity holds (as well as the other three assumptions from Section 4.2.2),
there exists a latent index model of the form

Di(z) = 1(g(z) ≥ Ui) (4.17)

that can represent the setting equally well. This result holds up even if the instrument Zi is not binary
(e.g. it takes on many values), or may even be a vector. In the above, g(z) is some function of the
instrument(s), common to all i. In our example, we took g to be linear, i.e. g(z) = γ0 + γ1 · z for some
γ0 and γ1.

4.2.5 Beyond a binary instrument: many LATE’s and marginal treatment
effects∗

Our discussion of the LATE model has focused on a setting in which both the treatment and the outcome
variable are binary, taking just two values. This section maintains the setup of a binary treatment but
now considers an instrument Zi that may take on many values, or be continuous. If we have multiple
instruments Z1, Z2, etc. for our treatment, we can take Zi to be a vector Zi = (Z1i, Z2i, . . . ) comprised
of all of them. Let Z be the support of Zi. In this context we can generalize our IV monotonicity
assumption as follows:

IV monotonicity for arbitrary Z: For any z, z′ in Z, either Di(z
′) ≥ Di(z) for all i or Di(z) ≤ Di(z

′)
for all i.

This generalized monotonicity assumption says that if we take any two values z and z′ of our instru-
ment(s), all individuals i move in the same direction (either into or out of treatment) when their coun-
terfactual value of Z is changed from z to z′. Consider for example an instrument Zi that takes on four
values. Monotonicity means that we can choose labels for these values z1, z2, z3 and z4 such that if any
individual i would take treatment if Zi = zj , they would also take treatment if Zi = zj+1. We might
represent this by a “chain” of instrument values:

•
z1

•
z2

•
z3

•
z4
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In this diagram, an arrow from z to z′ means that anyone who would take treatment at z would also take
treatment at z′ (don’t confuse this with the DAG arrows from Figure 4.1! In that case, an arrow repre-
sents the presence of a causal effect). Since Di(z4) ≥ Di(z3) and Di(z3) ≥ Di(z2) imply Di(z3) ≥ Di(z2),
we can connect these arrows and lay all of the values zj out in a chain.

As an example, suppose that a the tuitions at various universities in the country of Econometrica can
only be one of four values z4 = $0, z3 = $1000, z2 = $5000, or z1 = $10, 000 (alternatively, we can think
of these instrument values as reflecting tuition ranges). Tuition is randomly assigned across students,
and we consider this tuition to be an instrument for whether students in Econometrica attend university.
The interpretation of the above figure is that any student who would go to university if it cost $10, 000
would still attend if it was $5, 000, or if it were $1, 000 or free. Likewise, any student who would attend
university if it were $5, 000 would still attend if it were $1, 000, or free. And so on. The idea is that
while student may differ in many ways that influence their decision of whether to attend university, any
one student i’s treatment status would be monotonically decreasing in counterfactual tuition rates.

Note: IV monotonicity can be a very strong assumption when Zi is a vector. For instance, if
we have two binary instruments for university attendance (tuition and proximity), monotonicity
requires that either i) all students who would go to university if it were close but expensive
would also go if it were instead far but cheap, or ii) all students who would go to university if it
were far but cheap would also go if it were instead close and expensive. In this context a more
natural monotonicity assumption might be that all students who would go to university if it were
expensive would also go if it were cheap (regardless of whether it is close or far), and all students
who would go to university of it were far would also go if it were close (regardless of whether it is
cheap or expensive). See Mogstad et al. (2021) shows that under this more natural assumption,
referred to as partial monotonicity or vector monotonicity, conventional IV estimands based upon
the typical IV monotonicity assumption can be misleading. Goff (2020) shows how certain local
average treatment effects are nevertheless identified, and how one can estimate them.

A simple extension of the LATE result given in Section 4.2.2 shows that under the general IV mono-
tonicity assumption, for any pair of instrument values z′ and z such that P (Di(z

′) > Di(z)) > 0:

E[Yi|Zi = z′]−E[Yi|Zi = z]

E[Di|Zi = z′]−E[Di|Zi = z]
= E[∆i|Di(z

′) > Di(z)] (4.18)

Eq. (4.7) in the binary instrument setting is a special case of this when z′ = 1 and z = 0. (4.18) is given
as Theorem 1 in Imbens and Angrist (1994).

Consider for example a discrete instrument (for example, if Zi is the number of years of schooling that
i’s mother completed). Then Eq. (4.18) shows that we can identify a local average treatment effect
along each link in the chain: the local average treatment effect among individuals who would go to
university if their mother had 11 years of education but not 10, the local average treatment effect among
individuals who would go to university if their mother had 12 years of education but not 11, the local
average treatment effect among individuals who would go to university if their mother had 13 years of
education but not 12, and so on.

Theorem 2 in Imbens and Angrist (1994) shows that with discrete instruments, we can aggregate over
all of these individual LATE’s by using P(Zi) as our instrument, where P(z) := E[Di|Zi = z] is the
propensity score function. In particular, Cov(Yi,P(Zi))/Cov(Di,P(Zi)) yields a weighted average of
E[∆i|Di(zj+1) > Di(zz)] across the j. Under certain assumptions, this estimand is exactly what is
captured by the two-stage least squares estimator, which we’ll study in Section 4.3.

When we have access to a continuous instrument, our many LATE’s from Eq. (4.18) can yield a con-
tinuum of local average treatment effects, referred to as marginal treatment effects. Suppose we have a
single continuous instrument, and that monotonicity holds in the direction of increasing values of that
instrument: Di(z

′) ≥ Di(z) for any z′ > z. Then we can take the limit of Eq. (4.18) as z′ ↓ z to obtain:

d
dzE[Yi|Zi = z]
d
dzE[Di|Zi = z]

= lim
z′↓z

E[Yi|Zi = z′]−E[Yi|Zi = z]

E[Di|Zi = z′]−E[Di|Zi = z]
= E[∆i|z = inf

z
: Di(z) = 1] (4.19)

48



The first equality divides both the numerator and denominator by z′ − z and uses the definition of the
limit. Note that the LHS of (4.19) is identified from a regression of the outcome on the instrument,
while the denominator is identified from a regression of the treatment on the instrument. Neither of
these regression functions are guaranteed to be linear however, so in practice flexible or non-parametric
methods should be used to estimate them. The RHS of (4.19) is the average treatment effect among
individuals for whom the first value of z for which they begin to take treatment is z.

One can thus estimate E[∆i|z = infz : Di(z) = 1] as a function of z, with a single continuous instrument.
When Zi is a vector, we need some way to collapse our instruments into a single scalar to define an
analagous funciton. This can be done through the propensity score function, since P(z′) ≥ P(z) exactly
when Di(z

′) ≥ Di(z). Since P(z) = E[Di|Zi = z] takes values on the unit interval, we define the
marginal treatment effect function MTE(p) as a function of p ∈ (0, 1):

MTE(p) = E[∆i|Ui = p]

where we can for each individual i define Ui to be infz:Di(z)=1 P(z). For the MTE to be defined at
p, there must exist a value z ∈ Z such that the proportion of individuals who would take treatment
at Zi = z is exactly p, and there must be individuals for whom z is the “first” value of Z at which
they take treatment (where “first” is measured increasing order of the propensity score). In this case

MTE(p) =
d
dzE[Yi|P (Zi)=p]
d
dzE[Di|P (Zi)=p]

, which can be estimated from the data.

In understanding the MTE function, the scalar Ui can be interpreted as a latent “reluctance” against
treatment. An individual with a higher value of Ui requires a “higher” value of the instrument(s) to take
treatment. In fact, the conventional approach in the marginal treatment effects literature is to define Ui
explicitly as a relative cost of treatment in a latent index model, such as the one considered in Section
4.2.4, e.g.

Di(z) = 1(P(z) ≥ Ui)
where without loss of generality the function g in Eq. (4.17) can be taken to be the propensity score
function. See e.g. Heckman and Vytlacil (2005) for details. My definition Ui = infz:Di(z)=1 P(z) is
unconventional, but is equivalent if one starts from the IV monotonicity assumption rather than from
an explicit selection model Eq. like Eq. (4.17).

4.2.6 Potential outcome distributions and quantile treatment effects in the
LATE model*

Average treatment effects are a convenient and intuitive summary of heterogeneous treatment effects.
In the proceeding sections, we’ve seen how local average treatment effects are identified in IV settings
(with a binary treatment), whether we have a single binary instrument or even a continuous instrument
or collection of instruments.

But when treatment effects ∆i are highly heterogeneous within the population of compliers, the av-
erage could be misleading, even when it is conditioned on covariates as in Eq. (4.16). In the extreme
case, imagine that treatment has a huge effect just for some small subgroup of the compliers. Then we
might see a substantially positive LATE, even if treatment has a very small or even negative effect for
most of the compliers. Is there any way to empirically distinguish this case from one in which all the
compliers had the same treatment effect?

It turns out that we have a great tool at our disposal to “move beyond the mean” – under the standard
LATE assumptions of independence, exclusion, and monotonicity, we can actually determine the effect
of treatment on the whole distribution of Y among compliers.

This generalizes the discussion in Section 1.8 in which we assumed random assignment. Recall that

E[1(Yi ≤ y)|Di = 1] = P (Yi(1) ≤ y|Di = 1) = FY (1)|D=1(y)

Thus the LHS, which can be estimated from the data, tells us something about the conditional distribu-
tion of the treated potential outcome. Under random assignment, this is in turn equal to FY (1)(y), and
a similar argument let’s us identify the CDF of Y (0).

With an instrumental variable, we can only estimate the distribution of each potential outcome among
compliers, and not their unconditional distributions as with random assignment. To do this, we can make
use of a general result from Abadie (2002) that also underlies our ability to capture average complier
characteristics (Section 4.2.7). In particular, Lemma 2.1 of Abadie (2002) shows that
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Lemma. Let g(y) be a function and make the standard LATE model assumptions. Then:

E[g(Yi(1))|D1i > D0i] =
E[Dig(Yi)|Zi = 1]− E[Dig(Yi)|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]

and

E[g(Yi(0))|D1i > D0i] =
E[(1−Di)g(Yi)|Zi = 1]− E[(1−Di)g(Yi)|Zi = 0]

E[(1−Di)|Zi = 1]− E[(1−Di)|Zi = 0]

The result implies that if we pick some possible value y for Yi, and let g(Yi) = 1[Yi ≤ y], then the CDFs
of Y (0) and Y (1) conditional on being a complier are each identified:

FY (1)|D1>D0
(y) =

E[Di1(Yi ≤ y)|Zi = 1]− E[Di1(Yi ≤ y)|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]

and

FY (0)|D1>D0
(y) =

E[(1−Di)1(Yi ≤ y)|Zi = 1]− E[(1−Di)1(Yi ≤ y)|Zi = 0]

E[(1−Di)|Zi = 1]− E[(1−Di)|Zi = 0]

where for clarity, we for each d ∈ {0, 1} denote P (Yi(d) ≤ y|Di(1) > Di(0)) by FY (d)|D1>D0
(y).

The RHS of the above two equations can be estimated from the data for each value of y. If we repeat this
computation for all values of y, then we know the whole distribution function of each potential outcome,
conditional on being a complier.

Note that this type of result isn’t specific to the IV research design: you might be interested to know
that something analogous can also be done in an RDD setup (see Frandsen et al. 2012), and under more
complicated assumptions in a difference-in-differences design too (Callaway 2015).

One thing that having FY1|D1>D0
(y) and FY0|D1>D0

(y) lets us compute is so-called quantile treatment
effects (QTEs) among the compliers. For notational simplicity, let’s drop the conditioning on being a
complier: Di1 > Di0. The (unconditional) QTE is defined as

QTE(u) = F−1
1 (u)− F−1

0 (u)

where F−1
d is the quantile function associated with potential outcome Yd: F

−1
d (u) = inf{y : P (Yid ≤

y) ≥ u} is the uth quantile of Yd, and u is a specified quantile level u ∈ (0, 1).
Note that the QTEs are causal: they tell us about the difference between the distribution of Y (1)

and Y (0) (as opposed to the distributions Y (1)|Di = 1 and Y (0)|Di = 0, which might be confounded by
selection/endogeneity). Nevertheless, the QTEs do not tell us directly about the individual treatment
effects ∆i or their distribution, without further assumptions. The reason is that unlike the expectation
function, the quantile function is not linear–thus: QTEi(u) 6= F−1

∆ (u).
There is a notable exception: if we assume that each students’ rank were the same in both the

treated and untreated distributions: F0(Yi(0)) = F1(Yi(1)) for all i, then the u-quantile treatment effect
is equal to the treatment effect for a student with rank u. However, this is a strong assumption (referred
to as rank invariance) that’s hard to justify in general. Without additional assumptions such as rank
invariance, the marginal distributions F1(y) and F0(y) do generally place bounds on the distribution of
treatment effects, which are sometimes informative. See for example Fan and Park (2009).

4.2.7 The LATE framework beyond a binary treatment*

We’ve so far focused on a binary treatment variable when considering IV with heterogeneous treatment
effects. However, some of the results of this section carry over to treatments that are not binary.

Angrist and Imbens (1995) for example studies the LATE model in which we have an ordered dis-
crete treatment variable Si, such as years of schooling, and a binary instrument. Suppose that S takes
as values the integers 0 to J , where Yi(s) denotes potential outcomes when Si = s. We let Si(z) denote
our potential treatments, depending on instrument value z ∈ {0, 1}. Analogously to the monotonicity
assumption Di(1) ≥ Di(0) from the binary-treatment case, assume:

IV monotonicity for ordered discrete treatment and binary instrument: For all i: Si(1) ≥
Si(0).
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Note that we could instead accommodate Si(1) ≤ Si(0) for all i by simply re-labeling the instrument
values. Angrist and Imbens (1995) show that under the above monotonicity assumption:

E[Yi|Zi = 1]−E[Yi|Zi = 0]

E[Si|Zi = 1]−E[Si|Zi = 0]
=

J∑

s=1

ωs ·E[Yi(s)− Yi(s− 1)|Si(1) ≥ s > Si(0)] (4.20)

where ωs = Si(1)≥s>Si(0)∑J
j=1 P (Si(1)≥j>Si(0))

. This result shows that the Wald estimand yields a weighted average

over . It is easy to check that
∑J
s=1 ωs = 1 so the weights add up to one (and are positive). Eq. (4.20)

nests the familiar LATE formula (4.7) when the treatment variable takes just two values, in which case
J = 1 and there is just one term in the sum.

Angrist et al. (2000) extend this logic to a treatment variable that is continuous, such as when the
treatment variable is a price, and we’re for example interested in the elasticity of demand with respect
to the price. Let Pi be our treatment variable, where i might indicate a market in the case of demand
elasticity. Potential outcomes Yi(p) might then denote quantities demanded as a function of the price p.
Angrist et al. (2000) consider a setup with instrument(s) Z that may not be binary, but suppose that
we have the following instrument monotoncity assumption

IV monotonicity with a continuous treatment: For any pair z, z′: Pi(z
′) ≥ Pi(z) for all i or

Pi(z
′) ≤ Pi(z) for all i.

In their application Zi is the weather, which is assumed to shift supply but not demand for fish. They
then show that, analogously to (4.18) and (4.20):

E[Yi|Zi = z′]−E[Yi|Zi = z]

E[Pi|Zi = z′]−E[Pi|Zi = z]
=

∫
ω(p) ·E

[
dYi(p)

dp

∣∣∣∣Pi(z′) ≥ p > Pi(z)

]
· dp (4.21)

where ω(p) = P (Pi(z
′)≥p>Pi(z))∫

P (Pi(z′)≥p′>Pi(z))·dp′ . A Wald ratio comparing two instrument values z′ and z (such that

Pi(z
′) ≥ Pi(z)) identifies a weighted average of the derivative treatment effect dYi(p)

dp , among “complier”

markets whose price p is affected by the shift of instrument value from z to z′. These weights are positive
and integrate to unity, since

∫
P (Pi(z

′) ≥ p > Pi(z)) · dp = 1. Angrist and Imbens (1995) also extend
this expression to allow for covariates.

Moreover, the authors show that if we have a single continuous instrument having density fz, then
for any function g(z) of the instrument:

Cov(Yi, g(Zi))

Cov(Pi, g(Zi)
=

∫
λ(z) ·E

[
dYi(p)

dp

∣∣∣∣
p=Pi(z)

]
· dz

where λ(z) = α(z)∫
α(z′)dz′ with α(z) = dPi(z)

dz ·
∫∞
z

(g(y)−E[g(Zi)]) · fz(y) · dy. The weighting function

here integrates to unity, but whether or not it is positive depends on the function g. One choice that
guarantees it will be positive is g(z) = E[Pi|Zi = z]. With this choice, the result shows that LHS of
the above captures a weighted average of the causal derivative function dYi(p)/dp across different prices p.

So far we’ve only considered treatment variables that are ordered, whether they are binary, discrete, or
continuous. What about when the treatment variable does not have any natural order to it, for example
when the treatment variable is something like occupation or field of study? (Heckman and Pinto, 2018)
extend the notion of monotonicity to these settings and develop identification results.

4.3 The two stage least squares estimator

The proceeding sections have considered identification results unders IV assumptions. This section
considers estimation.

4.3.1 Prelude: estimating the Wald ratio with a single binary instrument

Throughout most of the identification results above, we focused on understanding the quantity Cov(Yi,Zi)
Cov(Si,Zi)

,

where we use Si to denote our treatment variable (which may be binary, discrete or continuous). Here
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Zi is a scalar instrument of some kind. When Zi is binary, we know that Cov(Yi,Zi)
Cov(Si,Zi)

takes the form of a

Wald ratio:
Cov(Yi, Zi)

Cov(Si, Zi)
=
E[Yi|Zi = 1]−E[Yi|Zi = 0]

E[Si|Zi = 1]−E[Si|Zi = 0]

With an i.i.d. sample (Yi, Si, Zi)
n
i=1, each of these four conditional expectations can be consistently

estimated by their sample analog, e.g.

Ê[Yi|Zi = 1] =

∑n
i=1 Yi · 1(Zi = 1)∑n
i=1 1(Zi = 1)

By the LLN and the continuous mapping theorem (see Section B.4), we can replace each of the conditional

expectations in the Wald ratio by their sample analog’s to get a consistent estimator of Cov(Yi,Zi)
Cov(Si,Zi)

:

Ê[Yi|Zi = 1]− Ê[Yi|Zi = 0]

Ê[Si|Zi = 1]− Ê[Si|Zi = 0]

p→ E[Yi|Zi = 1]−E[Yi|Zi = 0]

E[Si|Zi = 1]−E[Si|Zi = 0]

4.3.2 The two stage least-squares estimator with a single instrument

Now how does this generalize to the case in which Zi may take many values, rather than being binary?

Recall from Section 4.1 that our parameter of interest, the ratio Cov(Yi,Zi)
Cov(Si,Zi)

, is equal to the coefficient β1

from a regression
Yi = β0 + β1Si + Ui (4.22)

In Section 4.1.4, we saw that we can write β1 as the ratio of a simple linear regression coefficient of

the outcome on the instrument Cov(Yi,Zi)
V ar(Zi)

to the simple linear regression coefficient of the treatment

variable on the instrument Cov(Si,Zi)
V ar(Zi)

. The latter of these two regressions is referred to as the first-stage
regression.

Si = π0 + π1Zi + Vi (4.23)

The two-stage least squares estimator (2SLS) is constructed by first estimating the first stage Eq. (4.23)
by OLS, and then using these estimates to define the fitted or predicted value Ŝi for each observation
i. Next, Equation (4.22) is estimated by OLS, but using Ŝi rather than Si as the regressor. This is

the second stage of 2SLS. This delivers a vector of estimated coefficients β̂2SlS = (β̂0, β̂1)′, of which the
second component is our estimate of β1.

To see why this works, recall from Section 3.3 that the OLS fitted value Ŝi is defined as π̂0 + π̂1Zi,
where π̂0, π̂1 are the OLS estimates of the coefficients in Eq. (4.23). Then

β̂1 =
Ĉov(Yi, Ŝi)

V̂ ar(Ŝi)
=
π̂1 · Ĉov(Yi, Zi)

π̂2
1 · V̂ ar(Zi)

=
ρ̂1

π̂1

where we’ve used that Ŝi = π̂0 + π̂1Zi and that the constant term does not contribute to the covariance

or variance. The quantity in the third equality, ρ̂2sls,1 = Ĉov(Yi,Zi)

V̂ ar(Zi)
, is the OLS coefficient on Zi in

the reduced-form” regression of Yi on Zi introduced in Section 4.1.4. Since ρ̂1 and π̂1 are each con-
sistent estimators of their population counterparts, we have by the continuous mapping theorem that

ρ̂2sls,1
p→ β1 := Cov(Yi,Zi)

Cov(Si,Zi)
.

Note: if you implement 2SLS “by hand”, manually computing Ŝi (using e.g. the Stata predict command)
and then run the second-stage regression, the point estimates will be those of 2SLS but the standard
errors will not be valid, because they do not account for the fact that Ŝi is estimated from the data. See
the end of Section 4.3.3 for a discussion of standard errors for the 2SLS estimator.

4.3.3 The general 2SLS estimator with multiple treatments, instruments and
covariates†

Throughout our study of the local average treatment effects model, we found that the quantity Cov(Yi,Zi)
Cov(Si,Zi)

captured a meaningful average of causal effects, even when treatment Si takes on many values and/or
is continuous. In the last section, we’ve seen the 2SLS approach to estimating this quantity. But what
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about when we have multiple treatment variables, and/or multiple instruments, and possibly covariates
that are necessary to control for?

Generalizing LATE results to a case in which treatment is unordered or in which there are mul-
tiple treatment variables is not straightforward, and is an active area of research (see Heckman and
Pinto, 2018; Lee and Salanié, 2018; Kirkeboen et al., 2016; Kline and Walters, 2016 for some examples).
But while heterogeneous treatment effects are complicated, one can still use IV in very general settings
by assuming that treatment effects are homogenous, and linear when Si contains continuous components.

To this end, consider the equation:

Yi = S′iβS +X ′iβX + Ui (4.24)

in which our parameter of interest is the vector βS of coefficients on our treatment variables Si, and the
variables Xi are covariates, which we can assume to include a constant (this prevents us from needing
an intercept term β0). Suppose that Si has k components, which we’ll refer to as our k endogenous
variables. We call these variables endogenous because Cov(Si, Ui) 6= 0, where since Si is now a vector
we use the notation that 0 is a vector of zeros (in this case, having k components). Eq. (4.24) is referred
to as the outcome equation or the structural equation.

We aim to identify βS using a vector of m instruments Zi, where Cov(Zi, Ui) = 0. We will use the
following terminology:

• In the case that m < k say that the model is underidentified. In this case we lack sufficient
instruments to identify the k components of βS , and the 2SLS estimator will not be defined.

• In the case that m > k say that the model is overidentified. We have more instruments than we
have endogenous variables.

• In the case that m = k say that the model is just identified or exactly identified. We have exactly
the same number of instruments as endogenous variables.

The typical way to motivate Eq. (4.24) is to think of it as a structural model that determines Yi, in
which βS and βX denote the causal effects of treatments S and covariates X on Y , i.e. Yi(s, w) =
s′βS + w′βX + Ui. On this view, the X are sometimes referred to as “included exogenous variables”,
since they show up in the structural equation (4.24) but are uncorrelated with the error term. In
this jargon, the instruments are called “excluded exogenous variables” since they do not appear in the
outcome equation (4.24). However, it is not necessary to treat the covariates as exogenous to use the
2SLS estimator. Rather, we will think of them as controls that are necessary for the instruments to be
valid, in the sense of the conditional IV independence assumption introduced in Section 4.2.7. Below,
we will state a full set of assumptions under which 2SLS can be used.

As before, the 2SLS approach will be to replace Si in Eq. (4.24) by its predicted value in a first stage
OLS regression. When there is just one endogenous variable (k = 1), we simply augment Equation 4.23
to incorporate the same covariates as the outcome equation:

Si = Z ′iπZ +X ′iπX + Vi (4.25)

and the predicted value is Ŝi = Z ′iβ̂Z + X ′iβ̂X . It is important to include the covariates X in (4.25), as
the 2SLS estimator will not be consistent without them, even under conditional IV independence.

When k > 1, we instead have a first stage equation for each of the endogenous variables:

S1i = Z ′i[πZ ]1 +X ′i[πZ ]1 + V1i (4.26a)

S2i = Z ′i[πZ ]2 +X ′i[πZ ]2 + V2i (4.26b)

...

Ski = Z ′i[πZ ]k +X ′i[πZ ]k + Vki (4.26c)

where πZ is a k×m matrix and [πZ ]j indicates it’s jth row. Similarly, if there are p covariates (including
a constant), πX is a k × p matrix of first stage coefficients for the covariates.
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From Chapter 3 that for each equation j = 1 . . . k, we know that the OLS estimator of ([πZ ]j , [πX ]j)
is given by (

[π̂Z ]j
[π̂X ]j

)
= ([Z,X]

′
[Z,X])−1[Z,X]

′
Sj

where Sj is an n×1 vector of observations of treatment Sj , and n is the sample size. Here where Z is an
n×m matrix with rows Z ′i, Z is an n× p matrix with rows X ′i, and [Z,X] is then an n× (l+ p) matrix
formed from all the RHS regressors: the m instruments and the p covariates.

The n× 1 vector of fitted values Ŝj for endogenous variable j can then be written as

Ŝj = [Z,X]

(
[π̂Z ]j
[π̂X ]j

)
= [Z,X]

′
([Z,X]

′
[Z,X])−1[Z,X]

′
Sj = PZXSj

where we define the n×n matrix PZX = [Z,X]([Z,X]
′
[Z,X])−1[Z,X]

′
. This matrix represents a projector

matrix into the subspace of Rn spanned by the instruments and covariates.
Now let us return to the structural equation (4.24). If we collect across all i, we have

Y = SβS + XβX + U = [S,X]

(
βS
βX

)
+ U (4.27)

where S is an n × k matrix with rows S′i. The 2SLS estimator results from replacing each Sij by it’s

corresponding predicted value Ŝij and performing OLS. Collecting across all j = 1 . . . k, we can define

an n× k matrix Ŝ with rows Ŝ′j , i.e. Ŝ = PZXS.
The 2SLS estimator is then:

β̂2sls =

(
β̂2sls,S

β̂2sls,X

)
= ([Ŝ,X]

′
[Ŝ,X])−1[Ŝ,X]

′
Y

= ([PZXS,X]′[PZXS,X])−1[PZXS,X]′Y

where Y is an n×1 vector of observations of the outcome variable. A useful identity is that PZXX = X,
because the covariates X are included in the projector matrix PZX. Furthermore, the matrix PZX is
symmetric and idempotent, meaning that PZX

′PZX = PZXPZX = PZX. These properties allow us to
rewrite [PZXS,X] as PZX[S,X] and then simplify the 2SLS estimator to:

β̂2sls = ([S,X]′PZX[S,X])−1[S,X]′PZXY (4.28)

One can then show that under standard conditions for the IV model, β̂2sls
p→ β, where β = (βS , βX)′

are the coefficients in the structural equation (4.24).
To derive standard errors for the 2SLS estimator, one can begin by noting that by substituting (4.27)

into(4.28):

β̂2sls = β + ([S,X]′PZX[S,X])−1[S,X]′PZXU (4.29)

where β =

(
βS
βX

)
. Analogously to the case of OLS, the statistical properties of β̂2sls arise from the sec-

ond term, which depends upon the unobserverd errors U. We omit an explicit formula for estimated the
standard errors, but note that they follow from the standard theory for generlized method of moments es-
timators (see box below), and statistical packages (e.g. ivregress2 in Stata) will calculate them for you.

The 2SLS estimator is an example of the generalized method of moments (GMM) estimator, which
tries to solve sample analogs of the m + p moment conditions E[(Zi, Xi)

′Ui] = E[(Zi, Xi)
′(Yi −

S′iβS − X ′iβX)] = 0. Each of the m + p moment conditions is implied by the exogeneity of Z

and X. When the model is overidentified, there is generally not any β̂S and β̂X that can set all
of these m + p equations to exactly zero. GMM proceeds by minimizing the size of deviations
from the above equation, where a weighting matrix is used to aggregate over the various moment
conditions. 2SLS corresponds to the choice PZX as the weighting matrix.

When the model is just identified, such that l = k, we can decompose [S,X]′PZX[S,X] as the product
of three k + p× k + p matrices: [S,X]′[Z,X], ([Z,X]

′
[Z,X])−1, and [Z,X]

′
[S,X]. We can then use the
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matrix identity that (ABC)−1 = C−1B−1A−1 to rewrite the 2SLS estimator in the just-identified case
as:

β̂2sls =([Z,X]
′
[S,X])−1([Z,X]

′
[Z,X])((((

((((([S,X]′[Z,X])−1
((((

(([S,X]′[Z,X]([Z,X]
′
[Z,X])−1[Z,X]

′
Y

= ([Z,X]
′
[S,X])−1

((((
(((([Z,X]

′
[Z,X])((((

((((([Z,X]
′
[Z,X])−1[Z,X]

′
Y

= ([Z,X]
′
[S,X])−1[Z,X]

′
Y

This provides a simpler formula compared with the general case of Eq. (4.28) in which l ≥ k. Note that
this formulation is a nice way to see that when we use the Si as instruments for themselves (i.e. Z = S),
the estimator coincides exactly with the OLS estimates in the model Yi = S′iβS +X ′iβX + Ui:

β̂OLS = ([S,X]′[S,X])−1[S,X]
′
Y

4.3.4 2SLS issues: functional form and weak instruments*

This section details two potential problems with the 2SLS estimator, which can prevent it from delivering
meaningful results about the causal effects of the endogenous variables S on Y .

Treatment effect heterogeneity∗

Recall that homogeneous treatment effects is typically a very strong assumption, and our outcome equa-
tion (4.24) seems to impose that the effect of S on Y is described by s′βS for all units i. When Eq.
(4.24) does not in fact provide a formula for potential outcomes, what does 2SLS estimate?

First, our analysis of no-selection-on-gains (NSOG) from Section 4.2.1 extends to the general setting in
which we might use the 2SLS estimator. Roughly speaking, 2SLS will still be consistent for the average
treatment effect when:

1. {({Yi(s)}s, {Si(z)}z) ⊥⊥ Zi} |Xi where Yi(s) = Yi(s, z) (conditional independence and exclusion)

2. E[Yi(s)− Yi(s0)|Zi, Si, Xi] = s′βS (no-selection on gains and linearity of treatment effects).

3. E[Yi(s0)|Xi = x] = x′βX (linearity with respect to covariates)

4. ΠZ has full rank (relevance)

In the second assumption we fix a reference category of treatment s0, e.g. s0 = (0, . . . 0)′. This assump-
tion imposes NSOG because the average conditional treatment effect from s0 to s does not depend on
the value of treatment Si. It also does not depend upon the covariates which are also conditioned upon,
and is linear in s.

To see that these assumptions are sufficient, let us generate an equation for the realized value of Yi as
we did in Section 4.2.1:

Yi = Yi(Si) = Yi(s0) + Yi(Si)− Yi(s0)

= E[Yi(s0)|Xi] +E[Yi(Si)− Yi(s0)|Zi, Si, Xi]

+ (Yi(Si)− Yi(s0)−E[Yi(Si)− Yi(s0)|Zi, Si, Xi] + Yi(s0)−E[Yi(s0)|Xi])

= S′iβS +X ′iβX + Ui

where
Ui = Yi(Si)− Yi(s0)−E[Yi(Si)− Yi(s0)|Zi, Si, Xi]︸ ︷︷ ︸

term A

+Yi(s0)−E[Yi(s0)|Xi]︸ ︷︷ ︸
term B

,

and we’ve used assumptions 2 and 3.

Now consider an instrument vector Zi satisfying Assumption 1. Given that 2SLS is a type of GMM
estimator (see e.g. Newey and McFadden 1994, for some general theory), we can establish consistency
by first showing that the following conditional moment equality is satisfied (with probability one):

E[Ui|Zi, Xi] = E[Yi − S′iβS −X ′iβX |Zi, Xi] = 0
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To see that this moment condition is satisfied under Assumption 1, note that sinceE[Yi(Si)−Yi(s0)|Zi, Si, Xi]
does not depend on Zi, E[Yi(Si)−Yi(s0)|Zi, Si, Xi] = E[Yi(Si)−Yi(s0)|Si, Xi] and henceE[ term A|Zi, Xi] =
0. Then by Assumption 1, E[Yi(s0)|Xi] = E[Yi(s0)|Zi, Xi], and hence E[ term B|Zi, Xi] = 0 as well.
Further technical conditions are required for consistency of the 2SLS estimator, but Assumption 4 guar-
antees that there is sufficient variation in the instruments for identification, and that the probability
limit of the estimator is well-defined under standard regularity conditions.

In general, Assumptions 1-4 are pretty strong. In fact, the assumptions above imply that βS can be
identified even without the Zi, by using non-linear functions of Xi as instruments. Kolesár (2013) shows
that with a single treatment variable Assumption 3 can be replaced by assuming that the conditional
expectation of the instruments given the covariates are linear:

3.∗ E[Zi|Xi = x] = γx for some matrix γ (linearity of instruments given covariates).

Kolesár (2013) and Angrist and Imbens (1995) show what 2SLS estimates when there is just a single
treatment variable S, but NSOG is relaxed and replaced by a LATE monotonicity assumption. Bhuller
and Sigstad (2022) further considers the case with multiple treatments Si, under a multiple-treatment
analog of monotonicity. A key result here is that for 2SLS to uncover a weighted average of LATEs (with
positive weights), we need a condition of no cross effects that prevents the effects of other treatments
from contaminating the 2SLS coefficient for a given treatment.

Misspecification of the role of covariates†

A particularly strong restriction under the assumptions above is 3, which as we’ve seen above can be
replaced by 3.∗, linearity of the CEF of instruments given covariates. Blandhol et al. (2022) show that
when 3.∗ is relaxed and NSOG is replaced by the LATE monotonicity assumption, problems arise even in
the case with a single binary treatment. Not only do compliers contribute to the 2SLS estimand, but so
do always takers, who show up with negative weights. In general, care should be taken when interpreting
2SLS causally in the LATE model, unless the specification of covariates is sufficiently flexible to ensure
linearity of E[Zi|Xi].

Weak instruments*

The last two subsections have considered specification issues: when treatment effects are heterogeneous
and we cannot interpret Eq. (4.24) as a direct model of potential outcomes. Another potential pitfall
of the 2SLS estimator is statistical in nature, and occurs when the instrments are relevant but are only
weak predictors of the endogenous variables S.

From Eq. (4.29), one can show that the estimator β̂2sls is biased in finite samples. For simplicity,
consider the case without covariates, in which case

β̂2sls = βS + (S′PZS)−1S′PZU = βS + (S′PZS)−1 (πZZ′U + V′PZU)

where PZ = Z(Z′Z)−1Z′ and we’ve used that S = ZπZ + V.
Note that endogeneity of the treatments S arises from Vi being correlated with Ui (if it weren’t, then

by the first stage equation Si would be uncorrelated with Ui). Thus, the third term above represents a
bias term: in a finite sample, 2SLS is in fact biased “in the direction” of OLS as the term V′PZU will
be non-zero.

Under standard i.i.d asymptotics, the finite-sample bias goes away as n → ∞ because 1
nPZV

p→ 0,
and 2SLS is thus consistent. However, this result may provide a poor approximation of the true statis-
tical properties of β̂2sls, if πZ ≈ 0. The punchline is that when πZ is small or close to being singular,
conventional GMM confidence intervals for the 2SLS estimator are unlikely to provide a good approxi-
mation to the actual sampling distribution of β̂2sls.

Weak instruments asymptotics. Recall that the idea of a sequence in which n → ∞ is a fiction,
a theoretical device designed to deliver an approximation to the finite-sample distribution of an
estimator: in this case β̂2sls. If n is “large enough” this may deliver a good approximation.
However, standard asymptotics, in which the DGP is held fixed across all n (and only the size
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of the sample is varied), may not provide the best asymptotic approximation. In the literature
on weak instruments, one often instead considers an sequence in which we let πZ depend on n as
πZn = πZ/

√
n (so-called “weak instrument asymptotics”). Under weak instrument asymptotics,

one can show that 2SLS is not even consistent. However, the Anderson Rubin test is.

Multiple solutions have arisen to deal with the potential of weak instruments issues. The first is to
try to assess empirically whether weak instruments are likely to be a problem by inspecting the first stage
regression for the endogenous variables. One common rule of thumb is to inspect the F-statistic of the
first stage regression. In a case without covariates and a single endogenous regressor, one can show that

E[β̂2sls,1]− β1 ≈ Cov(Ui,Vi)
V ar(Vi)

1
F+1 , where F is the population analog of the first-stage F statistic (Angrist

and Pischke, 2008). Note that Cov(Ui,Vi)
V ar(Vi)

also captures the bias of OLS when πZ = 0. Thus with an F

statistic of say 9, the bias of 2SLS will be roughly 10% as bad as that of OLS. In this case, using 2SLS
rather than OLS may seem like a reasonable tradeoff. This rule of thumb, like all rules of thumb, should
not be taken as being dispositive.

Another approach is to avoid using 2SLS altogether. There exist alternative estimators (for example
the limited-information maximum likelihood estimator) that are less sensitive to weak instruments. But
one can go further actually compute confidence intervals for βS directly, without using point estimation
techniques at all. If one is willing to do this, the so-called Anderson-Rubin (AR) test is robust to weak
instruments issues, in the sense that it has the correct size asymptotically even under weak-instruments
asymptotics. In the case of m = k = 1 (just identified case with a single endogenous variable) and no
covariates (furthermore taking the constant β0 for simplicity), one can show that under the null that
βs = b for any candidate vector b, the Anderson-Rubin test statistic A(b) has a limiting distribution of
a standard normal, with the definition:

A(b) :=

∑
i Zi(Yi − bSi)∑
i Z

2
i (Yi − bSi)2

This result can be used as a basis for constructing confidence intervals for βS that are valid even if the
instruments are weak. The trick to making the AR test “work” is that the covariance between Si and
Zi never appears in the denominator of A(b).
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Chapter 5

Discontinuity based methods

In this chapter we consider approaches to identification of treatment effects that rely on discontinuities
in treatment assignment or in the institutional constraints that economic agents face. We focus on the
hallmark discontinuity-based method: the regression discontinuity design.

5.1 The regression discontinuity design

5.1.1 Introduction

The regression discontinuity design (RDD) was first introduced by Thistlethwaite and Campbell (1960)
in the context of evaluating the effect of public recognition on the educational and career outcomes of
students. In their setting, students scoring above a certain threshold score on a standardized test were
given public recognition for their academic achievement.

Let us consider a slightly different example, in which a population of students take a standardized
test, with Xi denoting the resulting test score for student i. Suppose that all students with test scores
greater than Xi = c receive a scholarship to attend university. If we’re interested in the effect, say, of
having the scholarship on university enrollment, then the use of the threshold in assigning the scholarship
offers a natural experiment. The students with scores just below the cutoff and the students with scores
just above the cutoff a pretty comparable to one another, ex-ante. However those with scores above the
threshold have access to the scholarship, while those just below do not. Any difference in the probability
of enrolling in university between these groups, the argument goes, must then be due to the scholarship,
and not other factors.

5.1.2 Identification in the sharp RDD

Let us formalize the intuition of the RDD described in above using our potential outcomes notation.
Letting Di be an indicator for whether student i received the scholarship or not, suppose that

Di = 1(Xi ≥ c) (5.1)

where c represents the cutoff used in offering the scholarship. We call the test score Xi the RDD running
variable. An assignment rule like (5.1) that is a deterministic function of the running variable is referred
to as a “sharp” RDD, which we’ll contrast with a more general “fuzzy” RDD in the next section.

Now consider our outcome variable Yi, an indicator for whether student i enrolls in university. Letting
our potential outcomes Yi(0)denote i’s enrollment decision in the case that they do not receive the
scholarship, and Yi(1) in the case that they do, we have that

Yi = Yi(Di) =

{
Yi(0) if Xi < c

Yi(1) if Xi ≥ c
(5.2)

Consider the average value of Yi as a function of Xi: the enrollment rate as a function of test score. It is
reasonable to expect m(x) := E[Yi|Xi = x] to be everywhere increasing in x, if students scoring higher
on the test are more likely to enroll in university.

For values x < c, m(x) is equal to E[Yi(0)|Xi = x], the average “untreated” outcome among students
with scores just around x. If this increases with x for values to the left of the threshold (as depicted by
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the solid orange line on the RHS of Figure 5.1), the increase cannot be due to the treatment (a schol-
arship offer), since none of these students are offered the scholarship. Instead, an increase in m(x) for
x < c is evidence that there is endogeneity between test scores and outcomes: students with higher test
scores having higher outcomes on average than those with lower test scores, even without the scholarship.

c

x

E[Yi|Xi = x]

c

limx↑cE[Yi|Xi = x]

limx↓cE[Yi|Xi = x]

E[Yi(1)|Xi = x]
E[Yi(0)|Xi = x]

τ(c)

x
Figure 5.1: Logic of a sharp RDD. Left hand side: the conditional expectation of observed outcomeY with
respect to the running variable X. Right hand side, the gap between the blue and orange lines at x = c identifies
τ(c) := E[Yi(1)− Yi(0)|Xi = x].

Similarly, for x > c the conditional expectation function m(x) captures E[Yi(1)|Xi = x]. By the same
logic, we may expect m(x) to increase with x (as depicted by the solid blue line on the RHS of Figure
5.1) because students who score higher on the exam and receive the scholarship are more likely to enroll
in university than students who score lower, even when the latter also receive the scholarship.

The black curve on the LHS of Figure 5.1 depicts the function m(x) over all values of x. This function
is identified because it is defined in terms of the population distribution of observable quantities (namely
Yi and Xi). Notice that something very special happens right at x = c. As we increase x through the
threshold c, we switch from observing Yi(0) potential outcome to observing the Yi(1) potential outcomes,
as we begin to average over students who were offered the scholarship rather than students who did not.
If the scholarship has a causal effect on university enrollment, we may expect to see a jump, or discon-
tinuity in m(x) at x = c.

Refresher: A function f(x) is called continuous at x = x0 if limx→x0
f(x) exists and is equal to

f(x0). For limx→x0 f(x) to exist, the limits from the left and from the right must be equal to one
another, i.e.

lim
x↓x0

f(x) = lim
x↑x0

f(x)

If f(x) is discontinuous at x = x0, but the left and right limits are themselves well-defined, then
the discontinuity in f(x) at x = x0 is the difference between the right and left limits:

lim
x↓x0

f(x)− lim
x↑x0

f(x)

To further understand the source of the gap depicted in Figure 5.1, let us make the following defini-
tions:

m0(x) := E[Yi(0)|Xi = x] and m1(x) := E[Yi(1)|Xi = x]

The function m0(x) is depicted in orange in the right panel of the figure. For values x < c, this coincides
with the observable CEF m(x). For values x ≥ c, m0(x) is unobserved—indicated by a dashed line. The
function m1(x) is depicted in blue. For values x < c, it is unobserved (indicated by a dashed blue line),
while for values x ≥ c it coincides with the observed m(x).

Define
τ(x) = E[Yi(1)− Yi(0)|Xi = x]
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The function τ(x) is the average causal effect of a scholarship offer on university enrollment, among
students who have a test score of x. For any x, τ(x) is the difference between the blue curve and the
orange curve. If both curves were observed, we could compute τ(x) for all x. However, there are no
values of x for which both curves are observable: all units are either treated or are untreated at a given
value x, by the deterministic assignment rule 5.1).

The magic of the RDD is to leverage an assumption that m0(x) is continuous at x = c to identify
τ(x) exactly at the single point x = c, where the solid portions of the blue and orange curves almost
overlap. The idea is that while college enrollment is likely to be increasing in test scores (on average),
a very small increase in test scores would be associated with only a very small increase in enrollment.
By making the test score difference arbitrarily small, we can make the average enrollment difference
arbitrarily small as well.

For simplicity, I assume below that both m1(x) and m0(x) are continuous in x at x = c. Strictly speaking,
you only need to assume that one of these is true. The sharp RDD identification result can be stated as
follows:

Proposition 5.1 (sharp RDD identification result). If treatment assignment follows Eq. (5.1) and
m1(x) and m0(x) are both continuous at x = c, then the discontinuity in m(x) = E[Yi|Xi = x] yields the
local average treatment effect among individuals at the threshold, that is:

τ(c) = lim
x↓c

E[Yi|Xi = x]− lim
x↑c

E[Yi|Xi = x]

Proof. By (5.2), we have that

lim
x↓c

E[Yi|Xi = x] = lim
x↓c

E[Yi(1)|Xi = x] = lim
x↓c

m1(x)

and
lim
x↑c

E[Yi|Xi = x] = lim
x↑c

E[Yi(0)|Xi = x] = lim
x↑c

m0(x)

By continuity of m1(x) at x = c, limx↓xm1(x) = m1(c). Similarly by continuity of m0(x) at x = c,
limx↑cm0(x) = m0(c). Thus,

lim
x↓c

m(x)− lim
x↑c

m(x) = m1(c)−m0(c)

= E[Yi(1)|Xi = c]−E[Yi(0)|Xi = c]

= E[Yi(1)− Yi(0)|Xi = c]

:= τ(c)

It’s worth reflecting for a moment on the source of identification in the RDD. It does not come from
assuming there is no endogeneity in the running variable. Indeed, we have specifically considered an
example in which m0(x) and m1(x) vary with x. Rather, the RDD assumes that endogeneity gets small
across small differences in the running variable. The magic of the RDD is that right at the threshold, and
infitesimal difference in the running variable determines whether an individual is treated or un-treated,
leading to an apples-to-apples comparison.

Note: Proposition 5.1 does not say that the ATE is identified. Rather, it shows that τ(x) is identified
for a single value of x: in particular at the discontinuity. In Figure 5.1, I’ve shown a case in which τ(x)
varies considerably with x: it is smaller for small and large values of x, where the orange and blue lines
are closer together, while being larger for values of x near c.

The average treatment effect at the threshold τ(c) might be a poor guide to the overall average treat-
ment effect, and it may not be a directly policy relevant treatment effect parameter. However, it is the
one point in the support of x that τ(x) is identified. Note that if one is interested in forecasting the effect
of increasing the threshold by a little bit, then τ(c) is exactly what you’d like to know, since the indi-
viduals with Xi = c are precisely the students that would be identified by this marginal shift to the policy.

60



Twists on RDD

Discrete running variable: The preceding analysis considers a running variable that is continuous.
However, settings often arise in which the support of Xi is discrete, e.g. the integers, and one
wants to employ an RDD identification argument. This is possible but requires assumptions
that are bit stronger than continuity of the md(x) functions. See Kolesár and Rothe (2018) for
details.

Many thresholds: Some settings involve discontinuous rules that involve many thresholds, and
practitioners seek to combine them by normalizing all thresholds to a common value, e.g. zero.
Bertanha (2020) provides a nice analysis of these kinds of settings settings.

Manipulation of the running variable: What if individuals can change their value of Xi in order
to make sure they cross the threshold? Does this pose a threat to causal inference? I consider
this question in Section 5.1.6.

5.1.3 Identification in the fuzzy RDD∗

The last section considered a case in which treatment Di was a deterministic function of Xi: Di is equal
to one if and only if Xi ≥ c. What if treatment uptake is not determined entirely on the basis of Xi, but
instead features a discontinuous increase at Xi = c?

This leads to the so-called fuzzy RDD model. To analyze fuzzy RDD settings, we will borrow from
the notation and language that we developed for the LATE IV model. In particular, let us say that unit
i is assigned to treatment if Xi ≥ c. Denote this by

Zi = 1(Xi ≥ c) (5.3)

For any unit i, let Di(x) denote potential treatment for unit i as a function of their value of the running
variable. Introduce the notation that

D−i = lim
x↑c

Di(x) and D+
i = lim

x↓c
Di(x) (5.4)

Just as with the LATE model, we will assume that there are three groups, defined in terms of their
values of D+

i and D−i :

• Always-takers have D+
i = D−i = 1. They would take treatment whether the running variable fell

slightly to the right or to the left of c.

• Never-takers have D+
i = D−i = 0. They would not take treatment whether the running variable

fell slightly to the right or to the left of c.

• Compliers have D+
i = 1 and D−i = 0. If their value of running variable fell slightly to the left of c,

they would not take treatment, and if it fell slightly to the right of c they would take treatment.

As an example of the fuzzy RDD model, suppose now we are interested not in the effects of a scholarship
on university enrollment, but instead we’re interested in the effects of university enrollment on wages at
age 30. Now treatment assignment Zi is an indicator for a scholarship offer, determined by i’s test score
Xi via Eq. (5.3). The outcome variable Yi is wages at age 30, and Di is an indicator for whether i went
to university.

Intuitively, always-takers are those students who would go to university irrespective of whether they
receive the scholarship. Never-takers do not go to university even if they do receive the scholarship.
Compliers are those for whom receipt fo the scholarship makes a difference in their university of enroll-
ment: those who are incented to enrol because of the cost savings (or because of the recognition/positive
reinforcement). As with the LATE model, we assume there are no defiers: individuals who would only
go to university if they did not receive the scholarship.

The fuzzy RDD identification result generalizes Proposition 5.1 to the fuzzy setting:

Proposition 5.2 (fuzzy RDD identification result). Suppose that the following hold:
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• (Continuity:) for all d, d1, d2 ∈ {0, 1}, the functions

E[Yi(d)|Xi = x,D−i = d1D
+
i = d2]

and
P (D−i = d1D

+
i = d2|Xi = x)

are continuous in x at x = c

• (Exclusion): potential outcomes Yi(d) do not depend directly on Zi, i.e. whether x is over threshold

• (Monotonicity): there are no defiers at the threshold, i.e. P (D−i = 1D+
i = 0|Xi = c) = 0.

• (Relevance/first stage): P (D−i = 1D+
i = 0|Xi = c) > 0, i.e. there are compliers at the threshold

Then:
limx↓cE[Yi|Xi = x]− limx↑cE[Yi|Xi = x]

limx↓cE[Di|Xi = x]− limx↑cE[Di|Xi = x]
= E[Yi(1)− Yi(0)|Xi = c,D+

i > D−i ]

Note that the assumptions above are completely analogous to the assumptions underlying the LATE
model. However, instead of assuming IV independence, we make continuity assumptions. In the Fuzzy
RDD, the causal parameter that is identified is the local average treatment effect among compliers at
the threshold:

E[Yi(1)− Yi(0)|Xi = c,D+
i > D−i ]

This quantity conditions on two events: being an individual with a value of Xi = c, and being among
the individuals who actually switch their treatment status when crossing the threshold.

Note: The fuzzy RDD identification result nests the sharp one (Proposition 5.1) in the case that Di = Zi,
so that all units are compliers, and there are no always- or never-takers. If actual treatment Di is not
observed, one can still use Proposition 5.1 with Di = Zi to identify so-called intent-to-treat effects: the
effect of being assigned to treatment (rather than actually receiving treatment) on the outcome.

Now let’s see why Proposition 5.2 holds. Recall that Di = Di(Xi), i.e. realized treatment assignment
depends on potential treatments and one’s value of the running variable.

Proof. Consider e.g. limx↓cm(x). By the law of iterated expectations this is:

lim
x↓c

m(x) := lim
x↓c

E[Yi|Xi = x] = lim
x↓c

E[Yi(Di(Xi))|Xi = x] = lim
x↓c

E[Yi(Di(x))|Xi = x]

= lim
x↓c

P (D−i = 0, D+
i = 0|Di = x) ·E[Yi(Di(x))|Xi = c,D−i = 0, D+

i = 0]

+ lim
x↓c

P (D−i = 1, D+
i = 1|Di = x) ·E[Yi(Di(x))|Xi = x,D−i = 1, D+

i = 1]

+ lim
x↓c

P (D−i = 0, D+
i = 1|Di = x) ·E[Yi(Di(x))|Xi = x,D−i = 0, D+

i = 1]

Noting that in the limit as x ↓ c, Di(x) approaches D+
i , we have by continuity that

lim
x↓c

m(x) = P (D−i = 0, D+
i = 0|Xi = c) ·E[Yi(0)|Xi = c,D−i = 0, D+

i = 0]

+ P (D−i = 1, D+
i = 1|Xi = c) ·E[Yi(1)|Xi = c,D−i = 1, D+

i = 1]

+ P (D−i = 0, D+
i = 1|Xi = c) ·E[Yi(1)|Xi = c,D−i = 0, D+

i = 1]

where we’ve also used the property that limx↓x0
f(x) · g(x) = f(x0) · g(x0) when both limits exist.

Repeating the same steps for the limit from below, we have instead that

lim
x↑c

m(x) = P (D−i = 0, D+
i = 0|Xi = c) ·E[Yi(0)|Xi = c,D−i = 0, D+

i = 0]

+ P (D−i = 1, D+
i = 1|Xi = c) ·E[Yi(1)|Xi = c,D−i = 1, D+

i = 1]

+ P (D−i = 0, D+
i = 1|Xi = c) ·E[Yi(0)|Xi = c,D−i = 0, D+

i = 1]
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In the numerator of Proposition 5.2, the always-taker and never-taker terms cancel and we are left only
with the compliers:

lim
x↓c

m(x)− lim
x↑x

m(x) = P (D−i = 0, D+
i = 1|Xi = c) ·E[Yi(1)− Yi(0)|Xi = c,D−i = 0, D+

i = 1]

An analagous argument for the denominator shows that it identifies the proportion of compliers at the
threshold, that is if we let d(x) := E[Di|Xi = x]:

lim
x↓c

d(x)− lim
x↑c

d(x) = P (D−i = 0, D+
i = 1|Xi = c)

and the result thus holds by relevance.

Exercise: What goes wrong in the above if the assumption that P (D−i = d1D
+
i = d2|Xi = x) is

continuous at x = c fails? Does limx↓c d(x)− limx↑c d(x) still identify the proportion of compliers at the
cutoff?

5.1.4 Parametric estimation in the RDD

How should one implement sample estimators of the expressions in Propositions 5.1 and 5.2? Here we
first consider estimation under the functional form restriction that the relevant estimands m(x) and d(x)
are linear on each side of the cutoff. This is not generally a good idea (unless under inspection, the
scatter plots actually look linear), but provides a good intuition for how to proceed with estimation more
generally.

5.1.4.1 Sharp RDD by OLS

Consider the first sharp case, where our goal is to estimate the quantity

lim
x↓c

m(x)− lim
x↑c

m(x)

Suppose that m0(x) and m1(x) are both linear in x, i.e.

m0(x) = E[Yi(0)|Xi = x] = γ0 + γ1 · (x− c) (5.5)

and
m1(x) = E[Yi(1)|Xi = x] = λ0 + λ1 · (x− c) (5.6)

Then, by (5.2):

m(x) = E[Yi|Xi = x] =

{
γ0 + γ1 · (x− c) for x < c

λ0 + λ1 · (x− c) for x ≥ c
and we can thus write

Yi = γ0 · 1(Xi < c) + γ1 · (Xi − c) · 1(Xi < c) + λ0 · 1(Xi ≥ c) + λ1 · (Xi − c) · 1(Xi ≥ c) + εi

= γ0 + γ1 · (Xi − c) + (λ0 − γ0) · 1(Xi ≥ c) + (λ1 − γ1) · (Xi − c) · 1(Xi ≥ c) + εi

where E[εi|Xi] = 0. Note that E[εi|Xi] is the same thing as E[εi|Xi,1(Xi ≥ c), Xi · 1(Xi ≥ c)]. Here
we’ve used that 1(Xi < c) = 1− 1(Xi ≥ c).

Our final estimating equation can thus be written

Yi = β0 + β1 · (Xi − c) + β2 · 1(Xi ≥ c) + β3 · (Xi − c) · 1(Xi ≥ c) + εi (5.7)

where β2 = λ0 − γ0 = limx↓xm(x) − limx↑xm(x) = τ(c). The treatment effect parameter τ(c) can
therefore be estimated by an OLS regression of the outcome on a constant, the distance Xi − c between
the running variable and the cutoff, treatment Di = 1(Xi ≥ c), and an interaction between Di and

(Xi − c). The coefficient on the treatment indicator Di then provides an estimate τ̂(c) = β̂2. Under the

standard conditions for OLS consistency τ̂(c)
p

→ τ(c).
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Note: It can be tempting to omit the interaction β3 in Eq. (5.7) between Di and Xi. This is not generally
valid: one should allow the function m(x) to have different slopes on either side of the threshold. One
case in which dropping β3 is valid is when treatment effects are assumed to be homogenous, in which
case m1(x) = m0(x) + ∆ for the homogenous treatment effect ∆, and hence λ1 = γ1.

Functional form misspecification: Though estimating Eq. (5.7) is very straightforward, it relies on the
linearity conditions Eqs. (5.5) and (5.6) to hold to be valid. One could make Eq. (5.7) more flexible
by adding higher powers of Xi and their interactions with Di = 1(Xi ≥ c), or limit estimation to a
bandwidth around the cutoff. In Section 5.1.5, we consider a more robust version of this idea, using the
idea of non-parametric regression. First, let us turn to parametric estimation in the fuzzy case.

5.1.4.2 Fuzzy RDD by 2SLS*

In the fuzzy case our estimand is, by Proposition 5.2:

limx↓cm(x)− limx↑cm(x)

limx↓c d(x)− limx↑c d(x)
(5.8)

where recall that d(x) := E[Di|Xi = x].

Note now that for x < c, we no longer have m(x) = E[Yi(1)|Xi = x], because m(x) now mixes an average
of Yi(0) for compliers and never-takers with Yi(1) among always-takers (by the LIE). Nevertheless,
we might visually inspect a scatter plot of Y versus X and conclude that for x < c, m(x) is indeed
approximately linear, and similarly for x ≥ c. In this case, we can estimate the numerator limx↓cm(x)−
limx↑cm(x) of (5.8) in the same way as in the last section. Introducing new notation for Eq: (5.7), we
can compute ρ̂2 by OLS in the regression:

Yi = ρ0 + ρ1 · X̃i + ρ2 · 1(Xi ≥ c) + ρ3 · X̃i · 1(Xi ≥ c) + εi (5.9)

where we let X̃i := Xi − c. This is the same result as in the sharp design but this new notation (ρ’s
instead of β’s, and we’ve introduced X̃i) will prove useful in drawing analogies to IV estimation.

What about the denominator limd↓c d(x)− limx↑c d(x) of (5.8)? If again, the relevant CEFs are linear,
we can estimate the discontinuity with an interacted regression equation

Di = π0 + π1 · X̃i + π2 · 1(Xi ≥ c) + π3 · X̃i · 1(Xi ≥ c) + νi (5.10)

where our estimate of limd↓c d(x) − limx↑c d(x) is π̂2, the coefficient on being over the threshold. Alto-
gether then, our estimate of the LATE would be ρ̂2/π̂2, a ratio of two OLS regression coefficients.

Does this look familiar, from our analysis of the 2SLS estimator? It should! Even though our identifi-
cation result in the RDD is different from that of an IV (based on continuity rather than independence),
it can in fact be estimated using the same 2SLS estimator. Define our “instrument” to be Zi = 1(Xi ≥ c).
Then, let β̂2sls be the vector of 2SLS coefficients from the “outcome equation”:

Yi = β0 + β1 · X̃i + β2 ·Di + π3 · X̃i ·Di + εi

and “first stage” equation:

Di = π0 + π1 · X̃i + π2 · Zi + π3 · X̃i · Zi + νi

2SLS then treats Zi and ZiX̃i as instruments for the endogenous variables Di and DiX̃i. The 2SLS
estimate of β2 then recovers the ratio of ρ̂2 to π̂2, which provides a consistent estimate of the LATE
among compliers at the threshold:

β̂2,2sls
p→ E[Yi(1)− Yi(0)|Xi = c,D+

i > D−i ]

Standard errors for β2,2sls then follow from the typical 2SLS standard errors. This is one advantage of
using 2SLS for estimation in the fuzzy RDD, rather than computing the ratio of two regression coefficients.

Note: The fuzzy RDD estimand has the same issues regarding functional form misspecification as in
the sharp case. If m(x) and d(x) are not actually piecewise linear, β2,2sls will generally be inconsistent.
The next Section provides an alternative method to estimation that can eliminate this risk, given a big
enough sample.

64



5.1.5 Nonparametric estimation in the RDD*

How can we perform estimation for the RDD without assuming that the functions m0(x) and m1(x) are
linear in x (and furthermore that d1(x) and d0(x) are also linear in x)?

One strategy would be to fit a polynomial function to the regression line on each side of the cutoff, by
adding powers of the running variable X2, X3, etc. and their interactions to the OLS or 2SLS regression
equation. This works, provided that the additional powers of X are sufficient to obtain a good fit. But
trying to fit the regression globally, across the full range of X values in the dataset, kind of misses the
point of RDD. All that really matters is that we capture the gap between limx↑cm(x) and limx↓cm(x)
well–what matters for this is the fit of m(x) close to c.

This leads naturally to the idea of fitting the RDD regression functions within a bandwidth around
the cutoff, ignoring data that falls far from it. Given a bandwidth h, this is simple as dropping all data
for which |Xi − c| > h and estimating (5.9) or 2SLS (in the fuzzy case) within this restricted sample.
If the fit of the regression equation (whether linear, quadratic, or whatever) is good on each side of the
cutoff everywhere within that bandwidth, it will do a good job of quantifying the discontinuity in m(x)
at c. It does not need to fit well outside of that bandwidth.

The figure above shows a simulated dataset in which the regression function m(x)—depicted by the
black dots labelled “Data”—is somewhat non-linear. The slope of m(x) increases as we approach the
threshold c = 0 from the left, and then decreases as x increases for positive x. The treatment effect τ(c)
is equal to the gap between a curve that connects the black circles to the left of the cutoff and another
curve that connects the black circles to the right of the cutoff. You can think of this as the gap between
the rightmost black circle below x = 0 (limx↑0m(x) ≈ −1) and the leftmost black circle above x = 0
(limx↓0m(x) ≈ 1), so τ(c) ≈ 1.5.

When OLS is applied using the full sample, it results in the orange lines. Since they use data far
from the cutoff, these underestimate the slopes of both m1(x) and m0(x) near x = 0, and lead to an
overestimate of the treatment effect: the gap between the two orange lines at the cutoff is more like 2.5.

The (slightly thicker) blue lines reflect OLS estimation of the regression lines on either side of the
cutoff restricted to a bandwidth of h = 5. Notice that these still underestimate the slopes of m0(x) and
m1(x) close to the cutoff, but by less than the orange lines. The (still thicker) green lines use a smaller
bandwidth of h = 2, and get even closer. Using the bandwidth of h = 2 results in an estimate of τ(c)
that is only a little bit too high.
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It would seem from the above that making the bandwidth still smaller would be better. The smaller
the bandwidth, the better the linear regression predictions will approximate the values of the functions
m1(x) and m0(x) close to the cutoff. But, we can’t keep making h smaller and smaller without limit
though, because by making h smaller we use less and less of the sample. This increases the sensitivity
of our estimates to the random variability of each observation. And eventually, we’d simply run out of
data!

Nonparametric regression

The idea of non-parametric estimation is based around the following tradeoff: as we make a statistical
model more flexible (e.g. by assuming a regression function is approximately linear only locally rather
than globally), we reduce bias but we also tend to increase the variance of our estimator. The optimal
amount of flexibility to introduce into the model (in our case, the value of h) depends on balancing this
tradeoff. If our parameter of interest is τ(c) and we denote by τ̂h(c) an estimate using a bandwidth of
h, we could think of the optimal value of h as the one that minimizes the mean squared error (MSE) of
the estimator, i.e. E[(τ̂h(c)− τ(c))2].

Before discussing how we might choose this MSE-optimal value of h for the estimator τ̂h(c), let us
step back and imagine the more general problem of estimating a regression function

m(x) = E[Yi|Xi = x]

As we’ve seen, when m(x) is linear in x, we can use OLS to deliver estimates of m(x) at any point x.
But what if we don’t want to make this assumption, or m(x) looks highly non-linear upon inspection
of the scatterplot of Y and X? If X were discrete, we could simply compute the sample mean of Yi at
each value of Xi. When X is continuous, a natural approach would be to “bin” values of X, and simply
average Y within each X.

The so-called kernel regression or local-polynomial estimator generalizes this idea of “binning” and
averaging Y , and provides a foundation for the most popular non-parametric estimator in the regression
discontinuity design. Suppose we’re interested in constructing an estimator m̂(x0) of m(x) evaluated at
some point x = x0. Kernel regression generalizes the “bin-and-average” approach in two ways.

First, we introduce a function K(u) referred to as a kernel function. K(u) reflects the “weight”
that an observation that is u bandwidths away from x0 will receive. The “bin-and-average” approach
corresponds to a so-called rectangular kernel, in which all observations for which |Xi − xo| ≥ h receive
equal weight, and any observation for which |Xi−xo| > h does not count at all. One undesirable feature
of the rectangular kernel is that it is not continuous, which makes the estimator m̂(x0) a discontinuous
function of x0.

Popular kernel functions
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The triangular kernel, by contrast, down-weights observations that are farther from x0, giving a weight
that approaches zero as |Xi − x0| approaches h. Two other popular kernel functions, the Gaussian and
Epanechnikov, do this in slightly different ways. The box above depicts these four choices of kernel K(u).
Important properties of the kernel are that it is positive, integrates to unity, has a finite second moment,
and in most applications we want a kernel function to be symmetric about zero. The choice of kernel
function often makes little difference in practice, but certain choices are optimal in certain settings.

Given a choice of K(u) and a bandwidth h, the Nadaraya-Watson estimator m̂NW (x0) is

m̂NW (x0) =
1
n

∑n
i=1K

(
Xi−x0

h

)
· Yi

1
n

∑n
i=1K

(
Xi−x0

h

)

Exercise: convince yourself that when using the rectangular kernel, the Nadaraya-Watson estimator
evaluated at x0 is equivalent to the “bin-and-average” approach for bin [x0 − h, x0 + h].

Some algebra shows that m̂NW (x0) solves the following minimization problem

m̂NW (x0) = argmin
γ

n∑

i=1

(Yi − γ0)2

m̂NW (x0) can thus be seen as a particular case of so-called “local polynomial estimators”, which—like
OLS—maximize the fit between a regression function and Yi. The key difference is that local polynomial
estimators weight the data using K(·/h), in order to only use data that is “close” to x0. For example
just as OLS solves: (

β̂0

β̂1

)
= argmin

γ

n∑

i=1

(Yi − γ0 − γ1Xi)
2,

a local linear estimator solves
(
β̂0

β̂1

)
= argmin

γ

n∑

i=1

K

(
Xi − x0

h

)
· (Yi − γ0 − γ1Xi)

2

This idea generalizes to any order of polynomial in Xi, for example the local quadratic estimator would
solve 


β̂0

β̂1

β̂2


 = argmin

γ

n∑

i=1

K

(
Xi − x0

h

)
· (Yi − γ0 − γ1Xi − γ2X

2
i )2

The Nadaraya-Watson estimator is the “local constant” estimator. Note that linear OLS corresponds to
the local linear estimator if we let h→∞. Regardless of the order of the polynomial used, the constant
β̂0 provides a non-parametric estimate of m(x0), the regression function evaluated at x0. To estimate
the full regression function m(x), one estimates the local polynomial estimator at each value of x0 (in
practice, usually along a grid of many x0 values).

The local polynomial regression estimator looks very much like OLS does, when written in terms of
the data. The main difference is the introduction of a diagonal matrix K with value Kii = K

(
Xi−x0

h

)
.

Then, the estimator is
β̂ = (X′KX)−1(X′KY)−1
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Implementing local polynomial estimators yourself for a given choice of h and K, you can even just use
the typical OLS command, computing the Kii and passing them to the regression function as weights.

Note: the idea of local-polynomial estimation can also be used to estimate a density function non-
nonparametrically. This is referred to as kernel density estimation (KDE). Just as kernel regression
generalizes the idea of averaging Y within bins of X, KDE generalizes the idea of a histogram, which
counts observations within bins of X.

Nonparametric asymptotics

Given a choice of the kernel function K, how does one choose the bandwidth h? Recall that we want to
choose the complexity of our model to balance bias and variance of the resulting estimator. First, note
that for any estimator m̂(x):

E[m̂(x0)−m(x0))2] = E[(m̂(x0)−E[m̂(x0)]) + (E[m̂(x0)]−m(x0)))2] = Bias(m̂(x0))2 + V ar(m̂(x0))

where Bias(m̂(x0)) := E[m̂(x0)]−m(x0). This bias-variance decomposition can be derived by observing
that the cross-terms in the above evaluate to zero. The bias-variance decomposition lets us think carefully
about how to choose h in a kernel regression. For any given sample size n, we can decrease bias by
shrinking h, but at the cost of increasing variance.

To ensure the optimal balance of bias and variance, one wants to choose h in a way that does not
let one term get too much larger than the other. This principle allows one to show that as the sample
size increases, the optimal bandwidth h shrinks proportional to n−1/5. In practice, one can estimate this
optimal h via the data using one of several methods. One approach is known as cross-validation, which
uses one part of the data to estimate β̂ and the other to evaluate the MSE of the estimator, choosing h
to optimize the out-of-sample MSE.

Note: local-polynomial regression is not the only method of non-parametrically estimating a regression
function m(x). Another popular method is called series regression, which rather than focusing on a
single point x0 attempts to fit a global function of increasing complexity, as the sample size increases.

Back to RDD

Using kernel-regression techniques, one can estimate each of the various limits in the fuzzy RDD estimand
from Proposition 5.2:

limx↓cm(x)− limx↑cm(x)

limx↓c d(x)− limx↑c d(x)
= E[Yi(1)− Yi(0)|Xi = c,D+

i > D−i ]

where recall that in the case of a sharp RDD we only need to estimate the numerator of the above. A
crude way of implementing non-parametric estimation of the above is to perform the 2SLS regression
mentioned before, but limiting the sample to those observations within a bandwidth h of the threshold.

However one does not need to use 2SLS: a more direct “plug-in” approach is to build an estimator up
from estimators of each of the four limits above. The main difference between RDD estimation and the
types of non-parametric estimation problems we discussed above is that we seek left and right limits of
regression functions m(x) and d(x), evaluated at x0 = c. In practice this is accomplished by only using
data from the right side of the cutoff when estimating limx↓cm(x) (or analagously for d(x)), and only
using data from the left side when estimating limx↑cm(x). A good package in Stata or R for doing all
of this automatically, including a data-driven choice of the bandwidth, is the rdrobust package. This
function will also get your standard errors right.

5.1.6 Manipulation and manipulation robust inference on treatment effects
in the RDD*

The intuition for why the RDD “works” is that individuals just above and just below the cutoff are
comparable in terms of the distribution of their potential outcomes. One threat to this continuity
assumption is that some individuals are able to manipulate their value of Xi to make sure they are
above the cutoff. For example, suppose admissions to a school is determined by a test-score Xi, and
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after grading the exams a teacher decides to artificially “bump up” the grades of some students to some
value above c (this example is borrowed from Gerard et al. 2020). Further, the teacher may extend this
favor more to students that she sees as “strong”, those the presence of manipulation is correlated with
Yi(0). In this case, the distribution of say Yi(0) might look completely different for Xi just above c as
compared to those students with Xi just below c, violating the continuity assumption of the RDD.

Note that such manipulation is only a problem in the RDD if it affects individuals that we see in
the data with Xi ≈ c. If the teacher manipulates by giving some students 100% on the exam and
the threshold is 80, these manipulated students won’t affect the RDD estimates much (and in terms of
identification they do not matter at all).

The classic test for evidence of problematic manipulation is called the “McCrary test” and it comes
from Mccrary (2006). The idea is to look for a discontinuity in the density f(x) of Xi. Formally, we want
to test whether limx↓c f(x) = limx↑c f(x). If some units are being artificially sorted to be just above
the cutoff, we may expect that limx↓c f(x) > limx↑c f(x). This test is inspired by an observation from
Lee (2008), that as long as Xi cannot be perfectly manipulated (i.e. there exists some final “noise” or
optimization error after the agent is done manipulating), the final random error in the running variable
sets up a kind of randomization device for treatment. Among those that are able to get themselves very
close to the cutoff, the final determination is left to chance. A simple model of this kind of setting (see
Section 2.2. of Lee 2008) carries the observable implication that f(x) be continuous at x = c. Mccrary
(2006) suggested testing this implication directly. For a modern implementation of the McCrary test,
see Cattaneo et al. (2018) and the rddensity package in Stata and R.

If one “fails” the manipulation test, not all hope is lost! Gerard et al. (2020) introduce an approach to
estimate bounds on the RDD parameter (whether in a fuzzy or sharp design) among “non-manipulators”.
The idea is very intuitive: the magnitude of the discontinuity in f(x) at x = c is informative about the
size of the sub-population who are able to manipulate their running variable, at among those least near
the cutoff. In particular τ = 1− limx↑c f(x)/ limx↓c f(x) identifies this proportion. If we know that say
τ = 5% of the population are manipulators near the cutoff, then we can form upper and lower bounds on
treatment effects by supposing that these “manipulators” are those with the highest potential outcomes
(as in the teacher example above) or the lowest potential outcomes, respectively, among those whom we
see on either side of the cutoff.

5.1.7 Covariates in the RDD*

Practitioners are often tempted to “control” for observed pre-treatment covariates into the RDD de-
sign. This is easy to do, given that the 2SLS formulation of a fuzzy RDD lets us add covariates to
both regressions. However, it should be noted that as long as the RDD assumptions are satisfied (the
essential one being the continuity assumption), covariates are not necessary for identification. Note
that this represents a departure from IV, where conditional independence between the instrument and
potential outcomes/potential treatments might be much more reasonable to assume than unconditional
independence. In an RDD, including covariates usually don’t really make the fundamental identifying
assumption more plausible.

Nevertheless, making use of covariates in the RDD can be helpful for improving the finite-sample
performance in estimation, by reducing the residual sampling variability in the outcome (similar to a
common justification for controlling for covariates in an unconditional RCT). For details, see Frölich and
Huber (2019), Calonico et al. (2019) and Cattaneo et al. (2022).

5.1.8 Quantile treatment effects in the RDD*

One is not limited to studying average treatment effects (among compliers at the cutoff) in an RDD.
Indeed, similar tricks to what we’ve seen before under random assignment and in IV designs can be
implemented to estimate the entire (marginal) distributions of Yi(0) and Yi(1) among compliers at the
cutoff. For details, see Frandsen et al. (2012).

5.2 Continuous treatments

5.2.1 The regression kink design*

Suppose that instead of having a binary treatment Di where P (Di = 1|Xi = x) is discontinuous at x = c,
that we have a continuous treatment B that follows some benefit schedule Bi = b(Xi) for some function

69



b. Suppose further tha b has a kink (i.e. a discontinuity in it’s slope) at x = c. This situation arises for
example in unemployment insurance schemes, where one accrues benefits as a function of prior income
at a higher rate for lower incomes, but then at a lower rate for higher incomes.

In this setting (referred to as the “regression kink”—or RK—design), one can estimate a local average
effect of B on an outcome Y , under some continuity assumptions similar to the RDD. The estimand
considers the discontinuity in the slope of E[Y |X = x] at x = c rather than in its level, e.g.

τ
limx↓c d

dxE[Y |X = x]− limx↑c d
dxE[Y |X = x]

limx↓c d
dxb(x)− limx↑c d

dxb(x)

where τ can be interpreted as a measure of the effect of B on Y . See Card et al. (2015) for details.
A related result that holds with a binary treatment is that if the probability of receiving treatment

has a kink (a discontinuity in slope) rather than a discontinuity in level at the cutoff, one can identify a
meaningful treatment effect parameter by comparing the magnitude of the kink in E[Yi|Xi = x] to that
in E[Di|Xi = x]. See Dong (2011) for details.

5.2.2 Regression discontinuity with a continuous treatment*

In other settings, one might have a continuous treatment variable like in the RK design, but rather
than a kink in treatment intensity at X = c as in the RD, or a discontinuity in the conditional mean of
treatment as in an RDD, some institutional feature leads to a discontinuous shift in the entire conditional
distribution of treatment at X = c. Identification of causal effects is again possible in such settings—see
Yingying Dong and Gou (2023) for details.

5.3 Using bunching for identification*

5.3.1 Bunching at a kink

In both the RD and the RK designs, a key assumption was that agents are not able to perfectly manipulate
their value of the running variable. It would indeed be problematic for either research design if we
observed many units with values of exactly Xi = c.

However such “bunching” in a choice variable is indeed a natural thing to expect when agents face
discontinuities in the sets of choices available to them. Imagine a progressive income tax schedule that
features two tax brackets: a rate of τ0 for income below some threshold k, and a higher rate τ1 > τ0 for
income above k. One can write the total tax bill for an income of y as

T (y) =

{
τ0 · y if y ≤ k
τ0 · k + τ1 · (y − k) if y > k

= τ0 · y + (τ1 − τ0) · 1(y > k) · (y − k) =

If one’s (pre-tax) income is y, then their after-tax consumption c is equal to y − T (y).

Suppose that individuals like consumption, but dislike work. We can represent this by a utility function
ui(y, c), which might vary by individual i. For a given level of c, their income will be decreasing in y (e.g.
because that requires more hours or effort at work). If they have perfect control over y (e.g. by adjusting
their work hours), then they will choose y to maximize ui given the increasing burden of taxation:

Yi = argmaxy ui(y − T (y), y)

Assuming that agents have convex preferences over (c, y), the solution to this problem is for the individual
to find a “tangency” between their indifference curves and the kinked tax schedule T (y), if one exists.
This is because if under the assumptions we’ve made (monotonicity and convexity of preferences) the
disutility of working will then increase with y. If there exists a point y < k where the individual’s
marginal rate of substitution between consumption and leisure is 1− τ0, then than point will be optimal
for them. Such an individual is depicted on the left segment of Figure 5.2 below.

However, it could be that the disutility of work is still low enough at y = k that the individual would
prefer to keep working, and find a tangency for y > k where the MRS between consumption and leisure
is 1− τ1. Such an individual is depicted on the right segement of Figure 5.2. Note: the two indifference
curves depicted in Figure 5.2 represent two different individuals with different preferences.
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There is a third possibility, for any individual for whom the MRS between leisure and working at
y = k is between 1 − τ1 and 1 − τ0, the optimal choice for them will be to choose the corner solution
of Yi = k. If the distribution of individuals’ preferences is continuous across the population, it is then
natural to expect a discrete mass of individuals choosing their incomes to be exactly at the threshold
between the two tack brackets. That is B := P (Yi = k) > 0.
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Figure 5.2: A kinked tax schedule. See text.

An influential paper Saez (2010) makes the observation that the magnitude of B can be informative
about the responsiveness of tax-payers to the incentives that change at the kink. To see the intuition
behind this result, let Yi(0) denote the income that individual i would choose if there were no kink in
the tax code, and instead income were taxed at the lower rate τ0 regardless of income, i.e.

Yi(0) = argmaxy ui((1− τ0) · y, y)

Individuals that choose Yi = k given the actual kinked tax schedule have Yi(0) > k—otherwise they
would have no incentive to change their earnings (given that the higher tax bracket only kicks in for
incomes above k). The insight of Saez (2010) is that if the elasticity of labor supply to the tax rate is
large in magnitude, then individuals with Yi(0) much greater than k might be willing to move down to
the kink if we imagine introducing the higher tax bracket. If instead responsiveness is small, then those
individuals who choose to bunch at the kink will have values of Yi(0) that are only a little bit bigger
than k.

Saez (2010) makes this prediction concrete by assuming that utility takes a simple parametric func-
tional form: quasilinear in consumption and iso-elastic in income:

uit(c, y) = c− ηi

1 + 1
ε

·
(
y

ηi

)1+ 1
ε

(5.11)

The preference parameter ε > 0 is taken to be the same for all individuals i, while ηi represents differences
in “ability” across individuals. If i has a high value of ηi, then they can produce a given income y with
a smaller disutility than somebody who has a lower value of ηi. Given a linear tax schedule with rate τ ,
optimal income takes the simple form Yi(τ) = ηi · (1 − τ)ε. The elasticity of labor supply with respect
to (1 − τ) is dyi(τ)/d ln(1 − τ) = ε, where yi(τ) := lnYi(τ) = ln(ηi) + ε · ln(1 − τ) denotes log income.
For this reason, ε is often referred to as the elasticity of income to the net-of-tax rate (1− τ).

Note that according to this model (5.11), counterfatual income Yi(0) without the tax kink is Yi(0) =
ηi · (1− τ0)ε, which increases with ηi. Higher “ability” individuals have higher incomes.

Recall that we can characterize who will bunch at Yi = k in the real-world based on the marginal
rate of substitution between work and leisure when y = k (and c = (1− τ0) · k, along the tax schedule).
According to (5.11), this is equal to:

MRS(k) = −
d
dyui(c, y)
d
dcui(c, y)

∣∣∣∣∣
y=k,c=k−T (k)

=
d

dy

(
ηi

1 + 1
ε

·
(
y

ηi

)1+ 1
ε

)∣∣∣∣∣
y=k

=

(
k

ηi

)1/ε

The bunchers are those with MRS(k) ∈ [1 − τ1, 1 − τ0], and we can thus introduce the notion of a
marginal buncher who has the highest ability ηi among those who bunch at the kink: η̄ = k · (1− τ1)−ε.

The marginal buncher has a value of Yi(0) equal to η̄ = η̄ · (1 − τ0)ε = k ·
(

1−τ0
1−τ1

)ε
. Bunchers are all
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individuals with Yi(0) ∈ [k, k ·
(

1−τ0
1−τ1

)ε
].

These implications are easier to visualize by considering the log of income, rather than income itself:

bunchers have log counterfactual incomes yi(0) between ln k and ln k + ε · ln
(

1−τ0
1−τ1

)
.

ln k

density of lnY0

↓

density of lnY0−ε ln 1−τ0
1−τ1

↓

B

Distribution of lnYi

ln k ln k + δ

B

δ = ε · ln
(
1−τ0
1−τ1

)

Density of lnYi(0)

Figure 5.3: See text

The left panel of Figure 5.3 plots the distribution of actual log income, chosen subject to the kinked
tax schedule. Assuming assuming that ηu is continuously distributed, the distribution of log income
admits a density on either side of the kink, and a point mass of size B at k. While the density on the left
side (blue) follows the distribution of lnYi(0) = ln ηi − ε ln(1− τ0) for values of η up to k · (1− τ)−ε (the
lowest value of ηi among the bunchers), the density on the right side (orange) follows the distribution of
lnYi(0) = ln ηi − ε ln(1− τ1) from for η ≥ η̂ (the highest value of ηi among the bunchers).

The right panel of Figure 5.3 depicts the full density of yi(0) = lnYi(0), for all values of ηi. To con-

struct this, we simple need to slide the orange portion of the distribution out by the amount ε · ln
(

1−τ0
1−τ1

)

(call this δ) as well as fill out the distribution of yi(0) in the range [ln k, ln k + δ]. This distribution
represents a “missing region” in which we do not observe the distribution of yi(0) (equivalently, we do
not know the distribution of ability ηi in the corresponding interval). However, we do know something
about the distribution of yi(0) in here: the area under the density curve must be equal to B, which is
observed from the data. That is:

B = P (yi(0) ∈ [ln k, ln k + δ])

If the kink is suitably “small” (i.e. τ0 ≈ τ1), we might imagine that δ is also small and hence an
approximation of the density of yi(0) as flat throughout the missing region may not introduce too much
error. If we trust this approximation, then note that we can back out δ through B = f0(k) · δ, where
f0(k) limy↑k f0(y) = limy↑k f(y) is the limit of the density of yi(0) as one approaches the kink from below.
Given this approximation, we an work out the elasticity ε as

ε ≈ B
f0(k)

/ ln

(
1− τ0
1− τ1

)

It’s worth pausing here to appreciate what we’ve shown. The choice of an individual’s income is com-
pletely endogenous in this setting: individuals sort onto one tax bracket or another on the basis of their
unobserved ability ηi. Yet, we’ve used the kink to identify the elasticity of income with respect to the
tax rate!

What’s the catch then? The main catch comes through the approximation B = f0(k) · δ, which
assumes that the density of yi(0) is flat through the missing region. If the missing region is not small
(that is, if the response to the change in tax rates is large), this approximation may be very poor. But
ultimately, we do not know what the density of yi(0) looks like in that region, because we cannot observe
it there. All we know is that the total mass in it is equal to B. As pointed out by Blomquist et al.
(2021) and Bertanha et al. (2023), one could rationalize an arbitrarily small elasticity (and hence low
δ) by assuming that the density of yi(0) suddenly spikes to be very high throughout the missing region,
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or rationalize an arbitrarily large elasticity (and hence high δ) by assuming that the density suddenly
falls to a very low level through the missing region. To rule these possibilities out, one needs to make
assumptions about this density. Such assumptions could include assuming that f0(k) is monotonic, or
that it has a derivative that lies within a pre-specified range. This yields bounds on ε rather than point
identification—see Blomquist et al. (2021) and Bertanha et al. (2023) for details.

My job market paper Goff (2023) assumes a shape restriction on the distribution of Yi(0): that it
is “bi-log-concave” (BLC). This assumption may be suitable for situations in which the kink is close
to a natural peak in the density (such that monotonicity is not reasonable), and it requires no pre-
specified parameters (as putting a bound on f0 or its derivative would. In that paper I also relax the
choice model underlying the bunching design: rather than assuming the parametric functional form of
(5.11) which restricts heterogeneity between individuals to occur through the scalar ηi, I simply assume
that each individual’s utility function is quasi-concave (i.e. they have convex preferences). Without a
simple choice parameter like ε to focus on, I instead characterize responsiveness to incentives though a
“treatment effect”: the difference between the choice an individual would make if they faced the slope
on the left side of the kink everywhere, and the choice they would make if they faced the slope appearing
on the right side of the kink everywhere (i.e. I introduce a Yi(1) to go along with Yi(0) and consider the
difference). Assuming BLC of both Yi(0) and Yi(1) lets us estimate bounds on the average treatment
effect among bunchers.

5.3.2 Bunching at a notch

To come.

5.3.3 Bunching at zero

To come.
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Chapter 6

Using time to identify causal effects

So far we’ve studied research designs that can be implemented using cross-sectional data, where ob-
servational units are indexed by i. What new opportunities for identification arise when we have data
that follows such individuals i over multiple time periods? This takes us into the world of panel data,
and opens up a new family of research design, including difference- in-differences, event study, and fixed
effects models. This chapter is named for the first of these, which will be our canonical use of a time
dimension for causal inference.

With panel data (as with repeated cross sections, see above), a single observation of an outcome
variable can be written as Yit, where i denotes an observational unit (such as an individual, firm, coun-
try, etc.) and t indexes a period or moment in time. “Time” here could really be any feature t of an
observation that can change while i is fixed, but we’ll speak as though t denotes time, as is usually the
case with panel data.

Panel data vs. repeated cross sections. In panel data, we observe the same unit i for multiple time
periods t, for example Yi0, Yi1, Yi2 are all in our dataset for one individual i, while Yi′0, Yi′1, Yi′2
are in the dataset for some other individual i′.

A repeated cross section dataset is one in which different the set of individuals observed at one
time t might be completed different then the set of individuals observed at another time t′ This
data structure is common in surveys, in which different individuals are sampled in different waves
of the survey.

A panel dataset is called balanced all individuals are observed for the same set of time periods t.

6.1 Difference-in-differences with two time periods

Consider a setting in which outcomes Yit are observed for the same individual at two time periods t = 0
and t = 1. A subset of individuals receive a binary treatment in 1, while no individuals are treated in
period 0. Let Gi ∈ {0, 1} indicate whether i is one of the individuals who is treated in the second period.
We have two groups: those who are treated in the second period (Gi = 1), and those who are never
treated (Gi = 0).

The classic example is Card and Krueger (1994), who looked at the effect of the minimum wage on
employment over a period in 1992 in which New Jersey increased their minimum wage (from $4.25 to
$5.05, a 20% increase). They collected data by surveying fast food establishments i in spring of 1992,
which we’ll call t = 0, and again in the fall of 1992, which we’ll call t = 1. The minimum wage increased
between the two periods, in April 1992.

As a comparison group, the researchers also surveyed fast food establishments in nearby eastern
Pennsylvania. In Pennsylvania, the minimum wage remained constant at $4.25 in both time periods.
Thus we have Gi = 1 for each store i in NJ, and Gi = 0 for each store i in PA.

Recall from Chapter 1 that with a binary treatment Di, we can eliminate selection bias if we have
random assignment, which implies Di ⊥ Yi(0). With panel data Yit for our outcome, the analogous
condition would be Gi ⊥ Yit(0) where we introduce time dependent potential outcomes Yit(0) and Yit(1).
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These denote the outcome that would have occured for unit i in period t with and without treatment,
respectively. In the minimum wage example, Yit(0) denotes the employment that store i would have in
period t if the minimum wage were $4.25, while Yit(1) denotes the employment that store i would have
in period t if the minimum wage were higher, at $5.05.

Since Gi is binary, the assumption Gi ⊥ Yit(0) would imply that E[Yit(0)|Gi = 1] = E[Yit(0)|Gi = 0].
This assumption would be very strong in the minimum wage example: it would say that NJ and PA
would have had the same mean employment per establishment in either time period t, if the minimum
wage were $4.25. We can test this assumption directly when t = 0, since the minimum wage is $4.25 in
both states during the spring wave of the survey. Card and Krueger (1994) found that there were an
average of 23.3 full-time equivalent workers (FTEs) in PA fast food restaurants, compared with just 20.4
in NJ. If E[Yit(0)|Gi = 1] = E[Yit(0)|Gi = 0] can be verified not to hold in t = 0, should we have any
confidence that it would hold when t = 1?

The parallel trends assumption instead says that

E[Yi1(0)− Yi0(0)|Gi = 1] = E[Yi1(0)− Yi0(0)|Gi = 0] (6.1)

i.e. the change in employment per restaurant between spring and fall 1992 would have been the same,
on average, among restaurants in both NJ and PA had the minimum wage in both states been $4.25.
Notably Eq. (6.7) allows for PA restaurants i to have higher Yit(0) than NJ restaurants in both periods,
as we indeed saw was the case for t = 0.

We call Eq. (6.7) the parallel trends assumption because it simply assumes that if it were not for
the minimum wage increase in NJ, the two states would have exhibited parallel trajectories in their
outcomes. These “parallel trajectories” are depicted in the figure below. The four solid circles indicate
the observed means in the difference-in-differences setting: one for each combination of group Gi and
time period t. In the Card and Krueger (1994) example, these values are estimated as:

• Ê[Yi0|Gi = 0] = Ê[Yi0(0)|Gi = 0] = 23.3, observed PA employment before the MW increase

• Ê[Yi1|Gi = 0] = Ê[Yi1(0)|Gi = 0] = 21.2, observed PA employment after the MW increase

• Ê[Yi0|Gi = 1] = Ê[Yi0(0)|Gi = 1] = 20.4, observed NJ employment before the MW increase

• Ê[Yi1|Gi = 1] = Ê[Yi1(1)|Gi = 1] = 21.0, observed NJ employment after the MW increase

Note that of these four values, only NJ employment per restaurant after the MW increase reflects the
Yit(1) potential outcome, rather than the Yit(0).

t = 0 t = 1

•E[Yi0(0)|Gi = 0]
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The quantity E[Yi1(0)|Gi = 1], which is a counterfactual quantity and not observed, is depicted as the
open circle in the figure above. However, under the parallel trends assumption Eq. (6.7), we can impute
its value, as

E[Yi1(0)|Gi = 1] = E[Yi0(0)|Gi = 1] +E[Yi1(0)|Gi = 0]−E[Yi0(0)|Gi = 0]

= E[Yi0|Gi = 1] +E[Yi1|Gi = 0]−E[Yi0|Gi = 0]

In the minimum wage example, the parallel trends assumption implies that employment per restaurant in
NJ in the fall of 1992 would have been 20.4+21.2-23.3=18.3 had New Jersey not increased its minimum
wage in April of 1992.

Given this, we arrive at a simple estimate of the average treatment effect among restaurants in New
Jersey, in the fall of 1992:

E[Yi1(1)− Yi1(0)|Gi = 1] = E[Yi1(1)|Gi = 1]−E[Yi1(0)|Gi = 1]

= E[Yi1|Gi = 1]− (E[Yi0|Gi = 1] +E[Yi1|Gi = 0]−E[Yi0|Gi = 0])

= {E[Yi1|Gi = 1]−E[Yi0|Gi = 1]} − {E[Yi1|Gi = 0]−E[Yi0|Gi = 0]} (6.2)

In the minimum wage example, this is 21.0 − 18.3 = 2.7. The third line rewrites this as the difference
between the change in NJ employment: (21.0− 20.4 = 0.6) and the change in PA employment: (21.2−
23.3 = −2.1), i.e. a difference between two differences. The result suggests that increasing the minimum
wage in NJ did not decrease employment per restaurant in the fast-food industry. If anything, the
estimate suggests an increase caused by the minimum wage change.

We call the LHS of Eq. (6.2) the ATT, or average treatment effect on the treated, because the
treatment effect Yi1(1)−Yi1(0) is averaged over individuals in the treated group Gi = 1 in the treatment
period t = 0, hence it averages over the treated units in the population (NJ restaurants after the minimum
wage increase).

Why the ATT? The reason that we can only identify the average treatment effect among
the treated (those with Gi = 1) in the second period, rather than the overall ATE in the
second period comes from the fact that the parallel trends assumption allows us to impute the
counterfactual quantity E[Yi1(0)|Gi = 1], allowing treatment effects to be identified in the second
period among this group.

To illustrate, suppose we instead had made an alternative parallel trends assumption about treated
outcomes rather than untreated outcomes, i.e.

E[Yi1(1)− Yi0(1)|Gi = 1] = E[Yi1(1)− Yi0(1)|Gi = 0] (6.3)

(6.3) would not be enough to impute the counterfactual quantity E[Yi1(0)|Gi = 1] (and then
identify the ATU in period 2) because we don’t observe Yi1(1) in the Gi = 0 group in either
period. Thus there is good reason, at least in the simple two-group, two-period setting to make
the parallel trends assumption about Yi(0)—and as a consequence settle for identification of the
ATT.

6.1.1 Estimation in the two-period difference-in-differences model

A simple estimator of the ATT in the two period diff-in-diff model simply replaces the expectations in
Eq. (6.2) by their sample counterparts, i.e.

ÂTT = {Ê[Yi1|Gi = 1]− Ê[Yi0|Gi = 1]} − {Ê[Yi1|Gi = 0]− Ê[Yi0|Gi = 0]} (6.4)

A more popular way to estimate (6.2) is through a regression framework. This provides a standard error
for the estimate, coming right out with the regression results.

Yit = α+ δ ·Gi + γ · Tt + β · Tt ·Gi + εit (6.5)

where for observation it, Tt is a dummy variable that is equal to one if t = 1, and zero if t = 0. The OLS

estimator β̂ is numerically identical to ÂTT .
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The logic of regression (6.5) can be seen as follows. First, the parallel trends assumption let’s us write

Yit(0) = α+ δ ·Gi + γ · Tt + ηit

where ηit := Yit(0)−E[Yit(0)|Gi, Tt] (the proof of this is left as an exercise). Then use that

Yit = Yit(0) +Dit · {Yit(1)− Yit(0)}

and we arrive at (6.5) with β = ATT , if we define an error term to be εit = ηit+Dit·{Yit(1)− Yit(0)−ATT}
where recall that Dit = Gi · Tt.

Exercise: show that under the parallel trends assumption, we may write E[Yit(0)|Gi] = α+ δ ·Gi +γ ·Tt
for some α, δ, γ.

Exercise: show that under the parallel trends assumption, the error term εit = ηit+Dit·{Yit(1)− Yit(0)−ATT}
above is mean zero conditional on Gi, for any fixed t.

Estimating the ATT via Eq. (6.2) allows one to incorporate covariates in a straightforward way. A
common specification is

Yit = X ′iλ+ δ ·Gi + γ · Tt + β · Tt ·Gi + εit (6.6)

where we let the constant α be included in the covariates term X ′iλ. Eq. (6.5) can motivated by a
parallel trends assumption that holds conditional on Xi, i.e.

E[Yi1(0)− Yi0(0)|Gi = 1, Xi] = E[Yi1(0)− Yi0(0)|Gi = 0, Xi] (6.7)

coupled with an assumption that one of the expectations above is linear in Xi: E[Yit(0)|Gi = 0, Tt =
0, Xi] = α + X ′iλ. See Abadie (2005) and Sant’Anna and Zhao (2020) for estimators that drop this
linearity assumption. In the above I have included time-independent covariates Xi, which are fixed at
t = 0 and can thus be seen as baseline characteristics of our individuals i. See Caetano et al. (2022) for
a discussion of including time-varying covariates that might be themselves effected by treatment.

An alternative notation for Eq. (6.6) writes it as a so-called two way fixed effects (TWFE) regression:

Yit = αGi + γt + β ·Dit + εit (6.8)

The group-level fixed effect αg replaces α + δ · Gi (which only varied at the group level). To clean up
notation, we have also rewritten γ · Tt as γt, and introduced the treatment indicator Dit = Tt · Gi.
We can take γ0 = 0 without loss of generality, since we must omit one time period if we have not
omitted one g from the group fixed effects αg. Note that the the above regression is often written as
Yigt = αg + γt +β ·Dit + εit, where we use the notation Yigt to indicate that unit i is in treatment group
g, i.e. Gi = g. We’ll see that the notation of (6.8) generalizes naturally to settings with more than two
time periods.

If one has panel data, in which the same individual is observed at different points in time, one could
instead estimate TWFE estimator with individual fixed effects αi:

Yit = αi + γt + β ·Dit + εit (6.9)

Specification (6.9) is more flexible than that of (6.8) because the coefficients αi do not need to be the
same for all i sharing a group Gi. Therefore, it tends to be the default when one has panel data at the
individual level. When one has a panel of aggregated individual-level data (say at the state or province
level), then one can estimate (6.9) with these state/provincial identifiers playing the role of i. This
version of TWFE (with individual—rather than group—fixed effects, along with time fixed effects) is
the most common specification in practice when the researcher has panel data (sometimes time-varying
covariates are included as well in (6.9)—see discussion above).

6.2 Basic setup with multiple time periods

In this section we see how the basic difference-in-differences approach to causal inference generalizes be-
yond the two-period case. Suppose we now observe outcomes Yit at T + 1 different time periods labeled
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{0, 1, . . . T}.

With more than two periods to consider T > 1, we now have some new terminology to discuss. For
instance, rather than estimating “the effect” of being treatment, we can talk about the effect of being
treated “k periods ago”, for some k ∈ {1, 2, . . . T}.

Dynamic treatment effects consider the effect of being treated k periods ago. For instance, in a setup
where some units receive treatment at t = 1, while others never receive treatment. Then with observa-
tions of Yit from t = 0 to t = T , we can talk about the effect of being treated this period, one period ago,
two periods ago, etc., all the way to T periods ago. These are called dynamic treatment effects. When
dynamic treatment effects are indexed by how long ago treatment was received (what we’ve been calling
k), we say that we are considering an event-study design.

Staggered adoption/event study design: starting with the above example, suppose that in addition to the
never-treated group and the group that receives treatment in period t = 1, there is a third group that
receives treatment in period t = 2, another group that receives treatment at t = 3, and so on. We call
this a setting of staggered adoption. Staggered adoption is standard for the event-study design.

Absorbing treatment: We call the treatment absorbing if after unit i receives treatment, they remain
“treated” for all periods following it (Callaway and Sant’Anna 2021 call this condition “irreversibility of
treatment”). Since we will focus on dynamic treatment effects, the restriction to an absorbing treatment
is essentially without loss of generality provided that each unit has at most one one spell of treatment. In
more complicated settings, one might imagine that units become “untreated” again at some later time,
possibly become treated a second time, etc. We will focus on an absorbing treatment in this section, but
generalizations exist to non-absorbing treatments as well.

Differences-in-differences vs. event study: Researchers sometimes use the terms “difference-in-differences
design” and “event-study design” fairly interchangeably. Loosely speaking, the literature has coalesced
around the convention that an “event study” focuses on dynamic treatment effects while “difference-in-
differences” focuses on a binary treatment. In a case with just two time periods, these are the same.
When there are multiple time periods, the difference in terminology is more about the estimand (and
therefore the estimator), and not about the research design. It’s all one research design: based on the
identifying assumption of parallel trends.

6.2.1 Treatment timing and event time

As indicated above, suppose the outcome Yit is observed for time periods t = 0 . . . T for some finite
T > 1. Recall that in the two period difference-in-differences model, we let Gi = 1 indicate the units
i that received treatment in period t = 1, and Gi = 0 indicate the units that never receive treatment.
Generalizing this, we now let Gi = 2 for the units that receive treatment in period t = 2, Gi = 3 for the
units that receive treatment in period t = 3, and so on. In general, we let Gi indicate the first period at
which unit i receives treatment. However, instead of indicating the group that never receives treatment
as Gi = 0 (as we did with the control group in a two-period difference-in-differences model), we denote
these units as having Gi =∞. The group Gi = 0 instead represent “always-treated” units, since Dit = 1
for all t = 0, . . . T . However, in most applications, there are no always-treated units because the data
typically begins before any units are treated.

Consider an absorbing treatment Dit, meaning that if Dit = 1 for some i and t, then Dit′ = 1 for all
t′ > t as well. The above notation lets us write a simple and general treatment assignment formula:

Dit =

{
1 if t ≥ Gi
0 otherwise

i.e. unit i has been treated in period t if t ≥ Gi.
The above formula lets us define a binary treatment in a context with staggered treatment adoption,

to think about the effect of having been treated at some point in the past. However, researchers are
usually interested in a more detailed kind of treatment effect: what is the effect of having been treated
k periods ago? This leads to a potential outcomes notation based on when a unit is first treated, which
we introduce in the next section.
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When discussing these dynamic treatment effects, it will be convenient to refer to the time since
treatment adoption t−Gi as event time. When event time is positive t ≥ Gi, it measures the length of
exposure of unit i to the treatment by period t. or example, if Gi = 4 for a given unit i, then period
t = 5 represents event time k of k = 1. In period t = 6, this unit experiences event time of k = 2, etc.
The period before i is treated represents event time k = −1. One might look for anticipatory effects
or violations of parallel trends by considering negative values of event time. We call t calendar time to
distinguish it from event time.

6.2.2 Potential outcomes based on treatment timing

Now we introduce potential outcomes to let us define dynamic treatment effects. To do so, we consider
counterfactuals based on the timing of treatment. For a unit i that was for example first treated at
t = 2, the relevant thought experiment is the following: what if i had instead first been treated at t = 3,
or t = 1, or not at all?

Accordingly, let Yit(0) indicate the outcome for unit i at period t if they never receive treatment at any
time before T . For any g ≥ 1, let Yit(g) denote the outcome that unit i would receive at period t if they
were first treated in period g. Observed outcomes are Yit = Yit(0) if Gi =∞ and Yit = Yit(Gi) otherwise.

With this notation, we can define our dynamic treatment effects as

∆it(g) = Yit(g)− Yit(0)

which denotes the effect on period t outcomes of being treated at time period g relative to not being
treated at all. We can define an “average treatment on the treated” type parameter for any combination
of g and t:

ATT (g, t) = E[Yit(g)− Yit(0)|Gi = g] = E[∆it(g)|Gi = g] (6.10)

ATT (g, t) measures the average effect of having first been treated in period g, rather than not at all,
among those units that are actually first treated in period g.

Finally, note that we can write unit i’s observed outcome at time t in terms of dynamic treatment effects,
as:

Yit = Yit(0) +
∑

g

1(Gi = g) {Yit(g)− Yit(0)} = Yit(0) +
∑

g

1(Gi = g) ·∆it(g) (6.11)

where the sum is over all the groups g = 1, 2, . . . T aside from the never-treated.
Just as Eq. (6.11) expresses observed outcomes in terms of dynamic treatment effects in calendar

time, one can instead express observed outcomes in terms of dynamic treatment effects in event time.
Define

βik = Yi,Gi+k(Gi)− Yi,Gi+k(0) = ∆i,Gi+k(Gi)

to be i′s effect k periods after the receive treatment at Gi. Then, relabeling the sum in (6.11) to be over
k = t− g instead of g:

Yit = Yit(0) +
∑

k

1(Gi = t− k) ·∆it(t− k) = Yit(0) +
∑

k

1(Gi = t− k) · βik (6.12)

where the sum is over all k ∈ −T, . . . , 0, . . . T .
With this notation, a natural estimand would be the average dynamic treatment effect E[βik] for

each value of event time k. The parallel trends assumption won’t be enough to identify this parameter,
but we’ll see in Section 6.5 that we’ll generally be able to estimate βk := E[βik|Gi 6= ∞], i.e. average
dynamic treatment effects among non never-treated units. To build intuition however, we’ll first study
estimation under a homogeneity assumption on dynamic treatment effects.
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Note on potential outcome notation: This notation is not completely standard across all the
papers in the “new” difference-in-differences literature. Sun and Abraham (2021) for example
use Yit(∞) rather than Yit(0) to denote untreated outcomes. This would save us from needing a
separate notation for the Gi =∞ units and for the others.

However using Yit(0) for untreated outcomes is more consistent with notation for the two-period
difference-in-differences model, and is familiar from this course’s general study of potential
outcomes with a binary treatment. I therefore follow the notation of Callaway and Sant’Anna
(2021) in using the above notation: Yit(0) for outcomes in the absence of treatment along with
Yit(g) for outcomes if a unit were treated at time t.

Note that other approaches use different notation also for treated potential outcomes: Chaise-
martin and D’Haultfœuille (2020) use the stanard binary-treatment notation Y (1), while Borusyak
et al. (2022) and Sun and Abraham (2021) only use counterfactual notation to denote untreated
outcomes (and just use Yit otherwise). All of these notations let us reason about the same con-
cepts, but one has to be mindful when comparing across the papers.

6.2.3 Parallel trends with multiple time periods

Just as in the two period case, the central identifying assumption in the multi-period difference-in-
differences design is that individuals who differ in their treatment status would have followed parallel
trends in the absence of treatment. We now have potentially several such groups to consider, but we can
again define the parallel trends assumption making reference only to the untreated potential outcome
Yit(0).

We can define a “strong version” of parallel trends that for identification of dynamic treatment effects
as the following:

Definition 6.1. We say that parallel trends holds when the evolution of untreated potential outcomes
Yit(0) over time t follows the same trend on average for all groups defined by treatment timing, that is:

E[Yit(0)− Yi,t−1(0)|Gi = g] = E[Yit(0)− Yi,t−1(0)|Gi = g′]

for all t, g and g′.

Sometimes it is more reasonable to assume that parallel trends holds conditional on some observed
covariates Xi.

Definition 6.2. We say that conditional parallel trends holds when the evolution of untreated po-
tential outcomes Yit(0) over time t follows the same trend on average for all groups defined by treatment
timing, that is:

E[Yit(0)− Yi,t−1(0)|Gi = g,Xi] = E[Yit(0)− Yi,t−1(0)|Gi = g′, Xi]

Here I have used time invariant covariates Xi that are assumed to be unaffected (e.g. measured prior to)
by treatment. For a generalization to time-varying Xit and a discussion of avoiding so-called bad control
problems, see Caetano et al. (2022).

The second identifying assumption, in addition to the parallel-trends assumption, is the following:

Definition 6.3. The no-anticipation assumption states that for some δ ≥ 0, E[Yit(g)|Gi = g] =
E[Yit(0)|Gi = g] for all t < g − δ.
This assumptions states that more than δ periods before treatment, there is no average effect of treat-
ment. This is the same as saying that ATT (g, t) = 0 for all t < g−δ. However, average treatment effects
“before” treatment may be non-zero for g − δ ≤ t < g. In many applications, one however assumes
that no-anticipation holds with δ = 0, on the grounds that units do not react in an anticipatory way to
treatment before it occurs.

Note that the no-anticipation assumption was made implicitly in the two-period difference-in-differences
model, when we replaced Yi0(0) by Yi0 among the treated group. If making use of conditional parallel
trends, the no-anticipation assumptions should be made conditional on Xi.
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6.3 The two way fixed effects estimator and its pitfalls

Recall from Section 6.1.1 that in the two-period difference-in-differences model, we can use the so-called
two way fixed effects (TWFE) estimator, which estimates β from the regression

Yit = αi + γt + β ·Dit + εit (6.13)

by fixed effects OLS, where Dit = Tt ·Gi is an indicator for receipt of treatment by unit i in time period
t. In the mulit-period model, one might estimate this same equation, with the treatment indicator Dit

replaced by 1(t ≥ Gi) for the multi-period case. This is sometimes referred to as the “static” TWFE
regression.

More frequently, authors focus on TWFE regressions for dynamic treatment effects, the vector of coeffi-
cients β in the regression

Yit = αi + γt +
∑

k=L...U
k 6=δ−1

βk ·Ditk + εit (6.14)

where for t < U , we define Ditk := 1(Gi = t−k) = 1(t = Gi+k). That is, rather than considering the ef-
fect of treatment being received by time t: Dit, one estimates the effect of treatment being first received k
periods ago, for various values of k ranging from some minimum lead L ≤ 0 to some maximum lag U > 0.

Collinearity and omitting base-periods: Note that specification (6.14) omits the period k = δ − 1 from
the treatment effect sum. Most commonly, researchers take δ = 0 and thus β−1 is omitted, while βk
for k < −1 are used to assess the validity of the parallel trends assumption. However, Borusyak et al.
(2022) point out that if L and U are set far enough from zero to include all possible treatment leads and
lags (what they call a fully dynamic specification), and there are no never-treated units, then a perfect
multicollinearity problem arises unless two coefficients βk are dropped. We can immediately deduce that
one βk needs to be dropped if there are no never-treated units, since in that case

∑
kDitk = 1.

The reason that we still need to drop a second βk is that one can always add a linear time trend to
the γ and subtract it off by changing the time and event-time effects. First note that we can write the
sum

∑
k
βk ·Ditk in (6.14) as βt−Gi . Consider any number λ. Then note that:

αi + γt +
∑

k

βk ·Ditk = αi + γt + βt−Gi

= (αi − λ ·Gi) + (γt + λ · t) + (βt−Gi − λ · (t−Gi))
= (αi − λ ·Gi)︸ ︷︷ ︸

α̃i

+ (γt + λ · t)︸ ︷︷ ︸
γ̃t

+
∑

k

(βk − λ · k)︸ ︷︷ ︸
β̃k

·Ditk

Note that the LHS of the above is the predicted value for observation it from the 2SLS regression given
a collection of parameter values αi, γt and βk (over all i, t and k respectively), and the RHS is the
predicted value for this same regression, for a new set of parameter values α̃i, γ̃t and β̃k. Since these
are exactly the same for all observations, the OLS estimates of αi, γt and βk are not unique! This is a
subtle version of perfect multi-collinearity. If you try to run the fully dynamic specification in standard
statistical software, it will either bark at you or worse: simply drop one regressor arbitrarily. This
amounts to choosing an arbitrary value of λ, and adding an arbitrary linear trend to our estimates of
the dynamic treatment effects βk. At the population level, our problem is one of under-identification:
the βk are only even identified up to an arbitrary trend that is linear in k. Ouch!

The solution to this problem is to impose some additional structure on the event-time effects βk. If
one has no never-treated group, a sufficient step is to assume that a second βk is equal to zero (beyond
the convention of already assuming β−1 = 0). For example, we could omit β−2, or set L and U in (6.14)
to be within the support of event time t−Gi in the dataset.

Binning: Another way to break the under-identification problem above is by “binning” dynamic treat-
ment effects. The intended interpretation of the coefficient βk is the effect of receiving treatment k
periods ago. Thus, choosing a value L > −T and/or U < T amounts to assuming that these effects are
zero for k < L or for k > T . Provided that L < −δ, one would expect that βk = 0 for all k < −δ.
An assumption that may be more plausible is that treatment effects are e.g. constant in event time for
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k ≥ U . In this case, one should estimate (6.14) with DitU := 1(t ≥ Gi + k). See Schmidheiny and
Siegloch (2023) for more details on this practice of “binning”, and the eqivalence between TWFE models
with binning and “distributed lag models” that put leads and lags of treatment indicator Dit on the
RHS.

6.3.1 When TWFE works: homogenous treatment effects in event-time

To develop some intuition for the TWFE estimator, let us see how it can be justified under the parallel
trends assumption if dynamic treatment effects are homogenous in “event time”. By homogenous treat-
ment effects, we don’t mean that the effect of being treated k periods ago is the same for all k (in this
case we would not need to use multiple βk), but instead that for each fixed k, the effect of being treated
k periods ago is the same for all i.

Homogenous treatment effects in event time says that the quantity βik defined in (6.12) for a given k is
the same for all i, i.e.:

βik = βk for all i

Note that since βik = ∆i,Gi+k(Gi), this imposes homogeneity of ∆i,g+k(g) both over groups Gi = g and
across all i sharing a value Gi = g. It is a very strong assumption, which we will want to relax.

If homogenous treatment effects in event time does hold, note that we can write Eq. (6.12) as

Yit = Yit(0) +
∑

k

1(Gi = t− k) · βk

= Yi0(0)︸ ︷︷ ︸
αi

+E[Yit(0)]−E[Yi0(0)]︸ ︷︷ ︸
γt

+

{∑

k

βk · 1(Gi = t− k)

}
+ εit (6.15)

where we let
εit := Yit(0)− Yi0(0)− (E[Yit(0)]−E[Yi0(0)])

Given the parallel trends assumption 6.1, we have for any g and t that

E[εit|Gi = g] = E[Yit(0)|Gi = g]−E[Yi0(0)|Gi = g]− (E[Yit(0)]−E[Yi0(0)]) = 0

since E[Yit(0)|Gi = g]−E[Yi0(0)|Gi = g] = E[Yit(0)]−E[Yi0(0)]. OLS estimates for the dynamic treat-
ment effect parameters βk are then consistent in the TWFE regression.1

Eq. (6.15) matches the form of the TWFE regression (6.14), but unlike the TWFE regression (6.14),
(6.15) sums over all possible event times k. This highlights that “binning” treatment effects βk outside
of some window L . . . U , as discussed in the last section, does amount to a substantive restriction on
dynamic treatment effects (which is why it can help avert underidentification problems discussed above).

Note: TWFE continues to “work” more generally if instead of assuming perfectly homogenous treatment
effects in event time, we assume that

E[βik|Gi = g] = βk for all g (6.16)

i.e. there is a version of “no selection on gains” in the sense that earlier and later treated groups do not
have differential treatment effects. In this case, we can write

Yit = Yit(0) +
∑

k

1(Gi = t− k) · βik

= Yi0(0)︸ ︷︷ ︸
αi

+E[Yit(0)]−E[Yi0(0)]︸ ︷︷ ︸
γt

+

{∑

k

βk · 1(Gi = t− k)

}
+ εit (6.17)

1To show that the parameters of Eq. (6.15) can be consistently estimated by fixed effects regression, E[εit|Gi = g]
is not obviously quite enough, since we also have the time and unit fixed effects in the model. A sufficient condition is
strict exogeneity (see e.g. p620 of the Hansen textbook) which in our context says that E[εit · Gi] and E[εit · γs] for any
s = 1 . . . T . The first of these follows from what we’ve shown above, since E[εit ·Gi] = E {Gi ·E[εit|Gi]} = 0, and the latter
follows because γs is not random (it is just a number given the time-period of interest s), so E[εit · γs] = γs ·E[εit] = 0.
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where we let
εit := Yit(0)− Yi0(0)− (E[Yit(0)]−E[Yi0(0)]) + (βi,t−Gi − βt−Gi)

where we still have that E[εit|Gi = g] since the conditional expectation of the last term is

E[βi,t−Gi − βt−Gi |Gi = g] = E[βi,t−g|Gi = g]− βt−g = βt−g − βt−g = 0

by assumption of (6.16).

6.4 What can go wrong with TWFE*

For simplicity, let us first consider the “static” specification (6.13) in which we aim a single coefficient β
on Dit, an indicator for having received treatment by period t. This is the case considered by Goodman-
Bacon (2021), and helps establish intuition for how TWFE can fail. Very similar considerations apply to
the dynamic treatment-effect specification (6.14), as studied by Chaisemartin and D’Haultfœuille (2020).

I copy Eq. (6.13) here for quick reference:

Yit = αi + γt + β ·Dit + εit

Goodman-Bacon (2021) shows that the OLS estimate β̂ can be written as a linear combination of a
large number of simple two-period, two-group difference-in-differences comparisons. These comparisons
always pick two groups g and g′, where g′ is treated later than g. Given g′ > g, let

Ȳ
post(g)
i :=

1

T − g
T∑

i=g

Yit

be the average observed outcome for unit i after time t = g (until the end of the sample at t = T ).
Similarly, define

Ȳ
pre(g)
i :=

1

g

g−1∑

i=0

Yit Ȳ
mid(g,g′)
i :=

1

g′ − g

g′−1∑

i=g

Yit

be the average observed outcome for unit i before time t = g, and the average outcome for unit i across
all time periods between g and g′, respectively.

With this notation Goodman-Bacon (2021) shows that β̂ can be written as a linear combination of terms
taking the following three forms, over g′ > g with g, g′ 6=∞:

β̂ =
∑

g 6=∞
snever
g · β̂g;never +

∑

g 6=∞

∑

g′>g

{
s

mid/pre
g,g′ · β̂g,g′;mid/pre + s

post/mid
g,g′ · β̂g′,g;post/mid

}
(6.18)

where

β̂g;never = (Ê[Ȳ
post(g)
i |Gi = g]− Ê[Ȳ

pre(g)
i |Gi = g])− (Ê[Ȳ

post(g)
i |Gi =∞]− Ê[Ȳ

pre(g)
i |Gi =∞])

β̂g,g
′;mid/pre = (Ê[Ȳ

mid(g,g′)
i |Gi = g]− Ê[Ȳ

pre(g)
i |Gi = g])− (Ê[Ȳ

mid(g,g′)
i |Gi = g′]− Ê[Ȳ

pre(g)
i |Gi = g′])

β̂g
′,g;post/mid = (Ê[Ȳ

post(g′)
i |Gi = g′]− Ê[Ȳ

mid(g,g′)
i |Gi = g′])− (Ê[Ȳ

post(g)
i |Gi = g]− Ê[Ȳ

mid(g,g′)
i |Gi = g])

With T time periods, there are on the order of T 2 such terms for various g and g′. The coefficients on
each term depend on the number of observations in each group, and share of time that each group spends

in treatment. These coefficients are all (weakly) positive, i.e. snever
g ≥ 0, s

post/mid
g,g′ ≥ 0, and s

post/mid
g,g′ ≥ 0

for all g, g′.

1. The quantity β̂g;never is the most straightforward of the three defined above. It simply compares
treatment group g during all of their treated periods to their untreated periods, and differences
this with respect to the never-treated group Gi =∞.

2. The second type of term, β̂g,g
′; mid/pre, compares the outcomes of an earlier treatment group g to

those of the later treatment group g′, differencing the mean outcomes in between periods g and g′

(during which time the earlier treatment group is treated but the later group is not).
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3. The final variety of term, β̂g
′,g;post/mid, compares the later treated group to the earlier one, taking

the difference in mean outcomes in the post period (when both groups are treated) to the middle
period between g and g′ in which the later group g′ is not treated, but the earlier group g is.

The presence of this final type of term β̂g
′,g;post/mid is where TWFE can lead you astray, and for that

reason I highlight it in purple. If the effect of treatment lasts more than one period (in event time),
then for units in group Gi = g the outcomes Yit are still changing over time during the periods between
g and g′, due to treatment. But since Dit is not also changing for group g during these periods, OLS
wants to use Gi = g units as a control group. Since these prolonged treatment effects get subtracted
in β̂g

′,g;post/mid, the estimand β treats some of the treatment effects of earlier-treated groups as if they
were part of the common time trend, which it is attempting to eliminate from β by differencing.

As a result of the third term, if one decomposes the probability limit β of the TWFE estimate β̂
into average treatment effect parameters ATT (g, t), it turns out that some group/time combinations can
receive negative weights. In principle, this means that even if all of the units receive a positive treatment
effect (at all time horizons k), one might still end up with a negative value of β. Yikes!

Note: It’s easy to get confused here. The problem is not that the weights s appearing in (6.18) are

negative. The weights appearing on each 2×2 difference-and-differences estimator appearing in β̂ is pos-
itive. However, after the paraellel trends assumption is used to re-express this decomposition in terms of
treatment effect parameters, the coefficients on some ATT (g, t) end up negative, due to the problematic

comparisons β̂g
′,g;post/mid, which compare later-treated units g′ to earlier treated units g, after the latter

are treated.

Note: for simplicity, I have here assumed a balanced panel. If some of the observations between g and g′

for unit i are for example missing, Ȳ
between(g,g′)
i would be defined as the average among the non-missing

observations, and unit i would receive correspondingly less weight in an overall average like.

Note: one can also see from above why the negative weighting issue is only a problem if we have staggered
treatment adoption and multiple time periods. If there is just one cohort of units g that ever get treated,
there are no g 6= g′ to show up in β̂g

′,g;post/mid.

While this section has illustrated the potential problems of TWFE in the case of the static specification
(6.13), the same threat of negative weights persists when we consider the dynamic difference-in-differences
specification (6.14). The basic reason is the same: when estimating the coefficient βk, OLS will want to
use already-treated groups g < t−1 as comparison groups when differencing outcomes between t and t−1
among units whose value of Ditk increases (as a function of k) between k−1 and k (i.e. those for whome
Gi = t − k). But with dynamic treatment effects that persist for many periods, these control units g
might still be experiencing changes in their Yit coming from the treatment, and these dynamic treatment
effects will incorrectly get subtracted out in the estimator β̂k. This issue is analyzed in Chaisemartin
and D’Haultfœuille (2020).

Note that if treatment effects are homogenous across units, negative weights are not a problem per-se.
Chaisemartin and D’Haultfœuille (2020) show that the weights on group-time specific average treatment
effect parameters add up to one. So, if they are all the same as one another, they’ll add up to the right
number. However heterogeneity should be expected in general, so the threat of negative weights is a
serious one in principle.

For a nice illustration of the Goodman-Bacon (2021) result for the static TWFE specification, see https:
//andrewcbaker.netlify.app/2019/09/25/difference-in-differences-methodology/. For simu-
lation illustrations in the case of estimating dynamic treatment effects via TWFE, see https://bcallaway11.
github.io/did/articles/TWFE.html.
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6.5 Constructing estimators that allow for general treatment
effect heterogeneity*

In light of the problems for TWFE decsribed in the last section, I know outline one approach to iden-
tification and estimation in the multi-period difference-in-differences model that avoids these issues by
carefully weighting over the two-group difference-in-differences estimands. This method was proposed
by Callaway and Sant’Anna (2021), and is I think particularly illuminating because it is explicit about
estimating the ATT (g, t) and then aggregating over them. However there are several alternatives that
are also popular and might be preferable in certain circumstances, see e.g. Sun and Abraham (2021),
Chaisemartin and D’Haultfœuille (2020), Borusyak et al. (2022), and Gardner (2022). The approach of
Chaisemartin and D’Haultfœuille (2020) in particular does not assume an absorbing treatment, so may
be useful in cases where treatment switches on and off or occurs in multiple spells.

6.5.1 Identification using never-treated units

Note that when there is a never-treated group, we can focus on the implication of Assumption 6.1 that

E[Yit(0)− Yi,t−1(0)|Gi = g] = E[Yit(0)− Yi,t−1(0)|Gi =∞] = E[Yit − Yi,t−1|Gi =∞]

Adding this up across all periods up to t:

E[Yit(0)− Yi0(0)|Gi = g] = E[Yit(0)− Yi,0(0)|Gi =∞] = E[Yit − Yi0|Gi =∞]

for all g, where we take g′ =∞ to represent the never-treated group. The key consequence of the above
is that, for any g ≥ 1 and t:

ATT (g, t) = E[Yit(g)− Yit(0)|Gi = g] = E[Yit(g)|Gi = g]−E[Yit(0)|Gi = g]

= E[Yit|Gi = g]−E[Yi0(0)|Gi = g]− {E[Yit(0)|Gi = g]−E[Yi0(0)|Gi = g]}
= E[Yit|Gi = g]−E[Yi0|Gi = g]− {E[Yit(0)|Gi =∞]−E[Yi0(0)|Gi =∞]}
= (E[Yit|Gi = g]−E[Yi0|Gi = g])− (E[Yit|Gi =∞]−E[Yi0|Gi =∞])

where we’ve used that Yit = Yit(Gi) and Yi0(0) = Yi0 by the no-anticipation assumption. Parallel trends
has also been used, to replace the term in brackets.

Notice that each term on the RHS of the final equation above is identified by the observable data: a
simple difference in differences that compares treatment group g to the never-treated group. Intuitively,
we can identify ATT (g, t) by comparing the time evolution of the Gi = g units between periods 0 and t
with the evolution of the never-treated units between periods 0 and t.

Callaway and Sant’Anna (2021) show how the above result extends to the case of conditional parallel
trends. In this case one must estimate a propensity score function pg(x) that yields the probability of
being in treatment group Gi = g given Xi = x.

6.5.2 Identification using not-yet-treated units

In some empirical applications, there are no never-treated units, and so we cannot use the result of the
last section to identify the ATT (g, t). Even if we do have such never-treated units, not relying on them
for identification might be desirable anyways, since the units that never receive treatment might be very
different from all of the other units, who do receive treatment at some point.

Instead, we might seek to use as a control group for outcomes at t among those with Gi = g other
units having with a Gi > t+ δ, i.e. the not-yet treated units who should not be showing any anticipation
effects yet at time t. Combined with the no-anticipation assumption, we will use the implication of
parallel trends (Assumption 6.1) that for any t ≥ g − δ and s < g − δ:

E[Yit(0)− Yis(0)|Gi = g] = E[Yit(0)− Yis(0)|Di,t+δ = 0] = E[Yit − Yis|Di,t+δ = 0]

where notice that the event Di,t+δ = 0 is the same as Gi > t+ δ.
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To see that this is implied by parallel trends, note that

E[Yit(0)− Yi,s(0)|Di,t+δ = 0] = E[Yit(0)− Yi,s(0)|Gi > t+ δ]

=
∑

g′>t+δ

P (Gi = g′|Gi > t+ δ) ·E[Yit(0)− Yi,s(0)|Gi = g′]

= E[Yit(0)− Yi,s(0)|Gi = g] ·


 ∑

g′>t+δ

P (Gi = g′|Gi > t+ δ)




︸ ︷︷ ︸
=1

where we have used parallel trends in the last step, which adding over subsequent time periods between
s and t yields E[Yit(0)− Yi,s(0)|Gi = g] = E[Yit(0)− Yi,s(0)|Gi = g′].

Now choosing s = g − δ − 1, the last period at which units treated at g are gauranteed to be unaffected
by treatment given the no-anticipation assumption:

E[Yit(0)−Yi,g−δ−1(0)|Gi = g] = E[Yit(0)−Yi,g−δ−1(0)|Di,t+δ = 0] = E[Yit−Yi,g−δ−1|Di,t+δ = 0] (6.19)

and re-arranging therefore:

E[Yit(0)|Gi = g] = E[Yi,g−δ−1|Gi = g] +E[Yit|Di,t+δ = 0]−E[Yi,g−δ−1|Di,t+δ = 0]

using that Yi,g−δ−1 = Yi,g−δ−1(0) for any unit first treated at g. Thus, for any t ≥ g − δ, ATT (g, t) is
identified as:

ATT (g, t) = E[Yit(g)− Yit(0)|Gi = g]

= (E[Yit|Gi = g]−E[Yi,g−δ−1|Gi = g])− (E[Yit|Di,t+δ = 0]−E[Yi,g−δ−1|Di,t+δ = 0])

where we have used (6.19) to replace the term in brackets.

Notice that the RHS of the last line above is a difference in differences that compares treatment group
g to at time t to not-yet-treated units at time g − δ − 1, the last period before the Gi = g can begin
to exhibit anticipation effects. Note that we can be sure that all the not-yet-treated units at time t
(Dit = 0) are also free of anticipation effects at g − δ − 1.

6.5.3 Aggregating the group-time specific average effects for the TWFE tar-
get parameters

The last two sections have shown that we can identify the parameter ATT (g, t) for various choices of
treatment group g and time period t. How should we summarize and report this potentially vary large
set of treatment effect parameters?

The most common choice is to mimic the coefficients βk that appear in the TWFE estimating equa-
tion, by constructing average treatment effects by length of exposure, or “event-time” k. In particular,
when we have never-treated units Gi =∞, we might seek to estimate

βk := E[βik|Gi 6=∞] = E[Yi,Gi+k(Gi)− Yi,Gi+k(0)|Gi 6=∞]

=
∑

g 6=∞
P (Gi = g|Gi 6=∞) ·E[Yi,g+k(g)− Yi,g+k(0)|Gi = g]

=
∑

g 6=∞
P (Gi = g|Gi 6=∞) ·ATT (g, g + k)

Recall that when using never-treated units as controls, and when there are no covariates X, the ATT (g, t)
is equal to (E[Yit|Gi = g]−E[Yi0|Gi = g])− (E[Yit|Gi =∞]−E[Yi0|Gi =∞]). Thus, βk can be writen
as

βk =
∑

g 6=∞
P (Gi = g|Gi 6=∞) · {(E[Yi,g+k|Gi = g]−E[Yi0|Gi = g])− (E[Yi,g+k|Gi =∞]−E[Yi0|Gi =∞])}
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Of course, for k large or small enough, there may be no units in the data for which Yi,g+k is actually
observed in the data. Thus our target parameter βk will instead need to aggregate only over g for which
g + k ≤ T , which is a stronger condition than Gi 6=∞:

βk := E[βik|Gi + k ≤ T ]

=
∑

g≤T−k
P (Gi = g|Gi + k ≤ T ) · {(E[Yi,g+k|Gi = g]−E[Yi0|Gi = g])− (E[Yi,g+k|Gi =∞]−E[Yi0|Gi =∞])}

When instead using not-yet-treated units rather than never-treated units as controls, recall thatATT (g, t) =
(E[Yit|Gi = g] − E[Yi,g−δ−1|Gi = g]) − (E[Yit|Dit = 0] − E[Yi,g−δ−1|Dit = 0]). Thus, we can instead
identify the parameter βk via

βk := E[βik|Gi + k ≤ T ]

=
∑

g≤T−k
P (Gi = g|Gi + k ≤ T ) · {E[Yi,g+k|Gi = g]−E[Yi,g−1|Gi = g])− (E[Yi,g+k|Dit = 0]−E[Yi,g−1|Dit = 0])}

where I’ve taken δ = 0 for simplicity. If one wants to estimate βk to assess pre-trends for some
L,L+ 1, · · · − 2, one would instead use a δ < L as the comparison time period.

Callaway and Sant’Anna (2021) discuss how one can further limit the groups g that appear in the defi-
nition of βk, with the goal of increasing the comparability of βk and βk′ for different values k′ and k. To
achieve this, on can “balance” the groups with respect to event-time to ensure that the same g appear
in each βk.

Callaway and Sant’Anna (2021) also discuss how the ATT (g, t) parameters can be aggregated to provide
a single overall summary measure of the effect of treatment, rather than separating it out by length of
exposure k. This target parameter is analogous to the one researchers have in mind when estimatinga
TWFE regression like (6.13), with a single coefficient on treatment Dit.

Estimating the above expressions for βk is straightforward when there are no covariates. When one
is instead leveraging a conditional parallel trends assumption with covariates Xi, one must estimate
conditional expectations of the form E[Yit|Xi = x,Gi = g] as well as group propensity scores P (Gi =
g|Xi = x) to construct the analogs of the above expressions. Callaway and Sant’Anna (2021) suggest a
“doubly-robust” approach to these estimation tasks that helps to guard against misspecification of how
these functions depend upon x, based upon Sant’Anna and Zhao (2020). See Callaway and Sant’Anna
(2021) for details both for the case with and the case without covariates.

6.6 Assessing and relaxing the parallel trends assumption using
pre-treatment observations

A common practice is to use the significance of the βk for k < 0 as evidence in favor of the parallel
trends assumption. In particular, researchers often plot the βk vs k and hope that the pre-treatment
βk’s are insignificant. Typically, estimate β̂k are plotted versus k, whether they are estimated by TWFE
or one of the newer “heterogeneity-robust” estimators (e.g. Callaway and Sant’Anna (2021), Sun and
Abraham (2021), Chaisemartin and D’Haultfœuille (2020), Borusyak et al. (2022), and Gardner (2022)
etc.), along with confidence intervals for each βk. Visually, the natural temptation is to check whether
the confidence interval for each βk includes zero for all pre-treatment k. One could also perform an
F-test of “joint significance”: that is test the hypothesis that β−2 = β−3 = · · · = βL if using TWFE with
indicators starting at even time of k = L and omitting β−1 as the base period.

Roth (2024) points out that one should be careful when interpreting plots of the βk vs k as a whole
(across positive and negative values of k) an indication of the path of dynamic treatment effects. A natural
supposition is that such effects should be zero for negative k if parallel trends and no-anticipation hold,
while capturing dynamic treatment effects for k ≥ 0. Thus a kink or jump at k = 0 would be expected if
the treatment has an effect. While this is indeed the case for the TWFE estimates under the assumtions
that would justify using TWFE (homogenous treatment effects, or more generally, NSOG), Roth (2024)

explains that the newer-estimators construct the pre-treatment coefficients β̂k in a different way than
the post-treatment coefficients β̂k. This asymmetry means that even in the absence of a true treatment
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effect, β̂k computed by the new methods may exhibit a kink or jump at k = 0. See Roth (2024) for

details and methods to construct the pre-and post β̂k in a way that is more symmetric, in the case of
the Callaway and Sant’Anna (2021) and Chaisemartin and D’Haultfœuille (2020) estimators.

For Borusyak et al. (2022), Roth recommends visualizing the β̂k for k < 0 separately for those
for k > 0: treating the former as a “test” for parallel trends and the latter as estimates for dynamic
treatment effects assuming that parallel trends indeed holds. To summarize: one can treat the pre-
treatment coefficients as a test of parallel trends/no-anticipation, and the post-treatment coefficients as
estimates of dynamic treatment effects (with those assumptions mantained), but one can’t look at the
plot across all k as a visual depiction of dynamic treatment effects over both pre- and post- treatment
periods in event time.

Other recent work allows one to relax the assumption of parallel trends, which may be especially
useful when it appears to be violated (i.e. some of the β̂k for pre-treatment are significant) when it
appears to be violated. Rambachan and Roth (2023) allow one to relax the parallel trends assumption
in several ways, for example by placing an upper bound on “how fast” violations of parallel trends can
change over event time k. This yields partial identification (i.e. bounds) on dynamic treatment effects.

Similarly, Ban and Kédagni (2023) uses the pre-treatment data to tell us “how wrong” the parallel
trends assumption is in the pre-treatment data, and then applying that in the post-treatment period
to put bounds on dynamic treatment effects. Here the parallel trends assumption is replaced with one
that lets us make this second step, which they call “bias set stability”. Bias set stability says, intuitively
speaking, that the selection bias in the post-treatment period is no larger than the largest selection bias
observed in the pre-treatment periods.

Another approach is to motivate the parallel trends assumption from an explicit choice model describ-
ing treatment uptake. See Ghanem et al. (2024) for recent work on how the parallel trends assumption
relates to restrictions on such selection models. A general theme of the results here is that for parallel
trends to hold for “all selection models” with a set of maintained assumptions—a natural notion of
robustness given that we may not know the exact “true” selection model—potentially strong restrictions
must hold on the time-dependence of the potential outcomes function. However if one is willing to main-
tain such restrictions by assumption, than parallel trends is implied (irrespective of what the data shows
in pre-treatment periods).

6.7 Difference-in-differences with a continuous treatment vari-
able

To come.

6.8 Synthetic control methods

The method of synthetic control is another way to use panel data to construct counterfactual val-
ues of an outcome over time. On a conceptual level: it can be distinguished from the difference-in-
differences/event-study methods covered so far in this chapter by it’s reliance on alternative identifying
assumption. Rather than making the parallel-trends assumption, synthetic control assumes that coun-
terfactual outcomes for a treated unit can be constructed from a weighted average of contemporaneous
outcomes from multiple untreated units.

On a practical level, it can be distinguished as being applicable when “treatment” applies to few
or even just one observational unit: for example a state or a country. Consider for example Card and
Krueger (1994)’s study of the increase in New Jersey’s minimum wage increase in 1992. If the authors
had data from comparison restaurants not only in Pennsylvania, but other nearby states that did not see
minimum wage increases over the same period, all of these states could serve as “donors” to construct a
no-minimum-wage-increase counterfactual for New Jersey.

Consider the following setup: we have a panel of N observational units indexed by i and that unit
i = 1 receives treatment at time t0, while units i = 2 . . . N remain untreated over the whole panel. Our
observed outcomes are:

Yit =

{
Yit(1) if i = 1 and t ≥ t0
Yit(0) otherwise

where note that we use the binary-treatment potential outcomes notation (and not the Yi(g) we employed
to study difference-in-differences with staggered adoption).
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The basic approach is as follows: to estimate treatment effects, we impute the value of Y1t(0) for
any t ≥ t0 as a weighted average of Yit(0) = Yit for the other units i > 0—at that same time period.
Formally, define

Ŷ1t(0) =

N∑

i=2

wi · Yit

where {wi} are a set of convex weights (positive and summing to unity) over the other units i = 1 . . . N .
Then a simple estimator of the treatment effect for unit 1 at any time t ≥ t0 is simply units i > 0—at
that same time period. Formally, define

τ̂1t := Yit − Ŷ1t(0) = Yit −
N∑

i=2

wi · Yit

The question, then of course, is how to choose the weights wi. A simple criterion is to choose the weights
so that for any pre-treatment period t < t0, Ŷ1t(0) roughly matches the observed Y1t = Y1t(0). For
example, one could choose the {wi}1...N to maximize overall fit pre-treatment, as measured by mean
squared error:

∑

t<t0

(
Y1t −

N∑

i=2

wi · Yit
)2

The identifying assumption is then that the weights wi that make these outcomes match are stable over
time and would continue to predict Y1t(0) well in the post-treatment period.

One advantage of the synthetic control approach is its visual transparency, which is best understood
through some examples. Abadie and Gardeazabal (2003) applies the method to study the economic
effects of terrorism in Basque Country by using various regions in Spain as control donors. Similarly,
Abadie et al. (2010) uses other U.S. states to study the effect of a tobacco control program in California
in 1988.

When might the identifying assumption of synthetic control—that a time-invariant set of weights wi
captures untreated outcomes Y1t(0) both before and after treatment—be a reasonable one? Of course,
one compelling piece of visual evidence would be that the fit is good across many time periods before
treatment, akin to seeing no pre-treatment dynamic treatment effects βk in an event study design. A
more formal answer is that we can expect synthetic control to work well when we can right down a
“factor-model” for untreated outcomes, that is:

Yit(0) =

F∑

f=1

αfi · λft + εit (6.20)

Here the λ are a set of F common “factors” that can change over time but are the same for all units
i, and the α are a set of factor “loadings”—one for each factor—that can differ by unit but are stable
over time. The ε represent mean-zero “transitory shocks”, which are mean zero and i.i.d. over units and
time. Covariates can also be brought into the above equation and used when estimating the weights,
and the factor model above can be replaced with an autoregressive model with coefficients that change
over time. See Abadie et al. (2010) for details.

To get some intuition, consider the factor model setup (6.20). Note that the imputation problem
for Y1t(0) in post-treatment periods would be solved if we knew that unit’s factor loadings αf1 as well
as the post-treatment factors λft. On an intuitive level, the pre-treatment choice of wi “finds” how
the loadings of unit i can be formed as linear combinations of the loadings from donor units, and given
that the post-treatment observations of Yit for the donor-units give us information about the factors
themselves. Abadie et al. (2010) shows that as the number of pre-treatment time periods goes to infinity
while the number of factors F is fixed, the bias of the synthetic control estimator goes to zero.

When using aggregate data with few units (e.g. states), statistical inference based on random sampling
may not be appropriate. One alternative for inference is to quantify uncertainty by considering “placebo”
fictitious treatments, and comparing one’s point estimate given the true treatment to the distribution
of estimates obtained with the placebo treatments. For details, see Abadie et al. (2010), and see Abadie
(2021) for a general overview of synthetic control methods. For a synthesis with difference-in-differences
type methods, see Arkhangelsky et al. (2021).
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Appendix A

Probability

A.1 Probability spaces

Main idea: A probability function ascribes a number to each of a collection of events, where
each event is a set of outcomes.

This section develops the mathematical notion of probability. Probability is a function that associates
a number between zero and one to events. Events, in turn, are sets of outcomes. It’s easiest to think
of outcomes in the context of a process that could have multiple distinct results, like flipping a coin or
randomly choosing a number from a phone book.

A.1.1 Outcomes and events

We begin with a set Ω of conceivable outcomes, which is referred to as the sample space or outcome space.

Examples: When flipping a coin, the sample space is Ω = {H,T}, corresponding to “heads” or “tails”,
respectively. When rolling a six-sided die, Ω = {1, 2, 3, 4, 5, 6}. When drawing a card from a 52-card
deck, the sample space can de denoted as a combination of a card-value and a suit, or {(n, s) : n ∈
{A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J,Q,K}, s ∈ {hearts, spades, diamonds, clubs}}. When using a random num-
ber generator to draw any number between 0 and 1, the sample space is Ω = [0, 1].

We denote a generic element of the sample space as as ω ∈ Ω. What we call events are simply sets
of such ω, i.e. subsets of Ω. But in general, not all subsets of Ω necessarily need to be events. Rather,
we consider a collection of sets F , referred to as an event space.

Definition A.1. An event space F is a collection of subsets A ⊆ Ω.

In all of the examples given above, the outcome space Ω has a finite number of elements. In such
cases, it is typical to choose F to be the collection of all subsets of Ω. This collection is referred to
as the powerset of Ω and is often denoted as 2Ω. As an example, the powerset of the set {1, 2} is
2{1,2} = {{{∅, {1}, {2}, {1, 2}}}}. When we consider Ω that are uncountable sets (for example when Ω is a
continuum), we’ll need to restrict the event-space, as discussed below.

A.1.2 The probability of an event

A probability function P associates a positive real number to each event A ∈ F .

Definition A.2. A probability function P (·) is a function from F to R, satisfying the following properties:

1. P (A) ≥ 0 for each A ∈ F
2. P (Ω) = 1

3. If A1, A2 . . . is a countable collection of disjoint sets (i.e. Aj ∩Ak = ∅ for any j 6= k), then

P


⋃

j

Aj


 =

∑

j

P (Aj)
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This formulation of probability is sometimes referred to as the Kolmogorov axioms of probability.
These axioms imply several intuitive properties of probability. For example, if A has a countable

number of elements, then the third property in Definition A.2 implies that:

P (A) =
∑

ω∈A
P ({ω})

provided that {ω} ∈ F for each ω ∈ A. In particular, this result implies that for a finite set A we
can simply sum up the probability of each of the outcomes in A. For example, for a six-sided die
P (even) = P ({2}) + P ({4}) + P ({6}).

A few other properties of probability functions are left as exercises. As practice, I’ll include a proof
of the familiar property that P (Ac) = 1− P (A). To see this, note that A and Ac are disjoint sets, and
that A ∪ Ac = Ω. Thus, by the third property of Definition A.2 P (Ω) = P (A) + P (Ac). Then use the
second property to obtain the result.

Exercise: Show that if A ⊆ B: P (A) ≤ P (B).

Exercise: Use the above to show that P (A ∩B) ≤ min{P (A), P (B)}.

Exercise: Derive the expression: P (A ∪B) = P (A) + P (B)− P (A ∩B).

Exercise: Derive the expression: P (A ∩B) = P (A) + P (B)− P (A ∪B). Hint: use (A ∩B)c = Ac ∪Bc.

A.1.3 Which sets of outcomes get a probability?

In addition to the Kolmogorov axioms for the function P , we also place some requirements on the event
space F . In particular, we require it to be a σ-algebra:

Definition A.3. A σ-algebra on Ω is a collection F of subsets of Ω with the following properties:

1. Ω ∈ F

2. If any A ∈ F , then Ac ∈ F , where Ac is the complement of A in Ω

3. If A1, A2 . . . are each in F , then
⋃
j Aj is also in F

Recall that events A ∈ F are those subsets of Ω that the function P must ascribe a probability (these
sets A are called measurable sets). The first item above, that Ω ∈ F , was already assumed by item 2. of
Definition A.2: we can always associate a probability with the whole outcome space, and that probability
is one. Item 2. of Definition A.3 says that if we are willing to give a probability to event A, then we
should also be willing to give a probability to the event that A does not happen, i.e. Ac. The third
property assures that given events A and B, we can always talk about the probability of A or B, which
is P (A ∪B).

Note that all of the properties of a σ-algebra tell us about things that must be in F , they guarantee
that F is not to “small”. The biggest collection of subsets of Ω is the set of all of its subsets: the pow-
erset 2Ω. The powerset of Ω is always a σ−algebra (exercise: check that it satisfies all three properties).
However, using 2Ω as the event space F can also be too big for certain applications. This is why it is
necessary to introduce the idea of a σ-algebra.

Example: Consider as an outcome space the entire unit interval: Ω = [0, 1]. It turns out that it is
impossible to define a ”uniform” probability function on this Ω, if we insist on using the whole powerset
of [0, 1] as our event space F . That is, there is no function P (·) satisfying Kolmogorov’s axioms, and
defined over all A ∈ 2[0,1], that satisfies our intuitive notion that moving a set around in the unit interval
does not change its probability. See Proposition 1.2.6 of Rosenthal (2006) for details.

This example demonstrates that in some cases we may need to work with something smaller than 2Ω. In
particular, issues like the above arise when Ω is uncountably infinite, e.g. corresponding to a continuum
of numbers. When Ω is finite or countable, it usually makes sense to consider the full powerset of Ω as
our event space. When we are in the uncountable case (e.g. when Ω is a convex subset of the real line
[a, b]), we typically appeal to the Borel σ-algebra:
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Definition A.4. The Borel σ-algebra B is the collection that consists of all intervals of the forms [a, b],
(a, b], [a, b), (a, b), and all other sets in R that are then implied by the definition of a σ-algebra.

Exercise: Show that for any Ω, the collection {{{∅,Ω}}} is a σ−algebra.

Exercise: Show that ∅ ∈ F if F is a σ−algebra.

Exercise: Show that σ−algebras are closed under countable intersections, that is
⋂
j Aj is in F if

A1, A2, . . . are each in F .

A.1.4 Bringing it all together: a probability space

Once we have a sample space, event space, and probability function, we refer to them altogether as a
probability space (sometimes called a probability triple).

Definition A.5. An probability space is a triple (Ω, F, P ) in which F is a σ-algebra defined on Ω, and
P is a probability function defined on F .

A.2 Random variables

Main idea: If we associate a number to each outcome in a probability space, we have what is
called a random variable.

A.2.1 Definition

Most data we use in econometrics is quantitative in nature, so its natural to think of probability spaces
in which the outcome space is composed of numbers. Many of the examples have this feature already, for
example Ω = {1, 2, 3, 4, 5, 6} for a six-sided die. But even when the ω do not have an immediate numeric
interpretation, we can define a random variable by associating a number to each outcome ω:

Definition A.6. Given a probability space (Ω, F, P ), a random variable X is a function X : Ω→ R.

Example: Suppose I randomly select a student in this class, which I represent by a probability space with
Ω = {all students in this class}, F = 2Ω, and P ({ω}) = 1/|Ω| for each ω ∈ Ω. If we let X(ω) denote the
height in inches of student ω.

A random variable X defined from a primitive probability space (Ω, F, P ) allows us to define a new
probability space in which the outcomes are real numbers. We can now define a new probability function
PX on sets of real numbers, using the original probability function P on Ω:

PX(A) := P ({ω ∈ Ω : X(ω) ∈ A}) (A.1)

Technical note: observe that the above definition gives a way to associate a probability PX with any
set A of real numbers, provided that {ω ∈ Ω : X(ω) ∈ A} ∈ F . To ensure this condition holds it is
typical to restrict to sets A that belong to the Borel algebra B defined in Section A.1.3, and further insist
that the function X is measurable. X being measurable is a technical condition that just means that for
any x ∈ R, the set {ω ∈ Ω : X(ω) ≤ x} ∈ F . Our new probability space can now be denoted as (R,B, PX).

A realization of random variable X is the specific value X(ω) that it ends up taking, given ω. While X
is a function, X(ω) is a number. Lowercase letters x are often used to denote numbers that are possible
realizations: e.g. x = X(ω) for some ω ∈ Ω.

A.2.2 Notation

The notation of Equation (A.1) is pretty cumbersome to work with, so the convention is to simplify it
in a few ways.

Let’s start with an example. If we’re interested in the probability that X(ω) is less than or equal to
5, we’ll typically write this as: P (X ≤ 5), which can be interpreted as PX(A) where A = (−∞, 5], or
equivalently: P ({ω ∈ Ω : X(ω) ≤ 5}). What’s changed in this notation? Let’s go through step-by-step:
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• First, we haven’t bothered with the subscript X on PX like in Equation (A.1) because it’s clear
from what’s inside the parentheses that we’re talking about random variable X.

• Second, inside the function P we’re using the language of conditions rather than sets. That is,
rather than writing out the set A = (−∞, 5] of values we’re interested in, we just write this as a
condition: “≤ 5”.

• Third, we’ve made ω implicit and written X rather than X(ω). However, you often see ω left in.
For example, we might write P (X(ω) = x) for the probability that X takes a value of x. In the
context of Equation (A.1), this maps onto PX({x}), or equivalently P ({ω ∈ Ω : X(ω) = x)}).

Given that we’re using the language of conditions, we often write “and” inside probabilities, for exam-
ple: P (X ≤ 5 and X ≥ 2). The “and” operation translates into intersection in the language of sets:
P ({ω ∈ Ω : X(ω) ≤ 5} ∩ {ω ∈ Ω : X(ω) ≥ 2}). Similarly, “or” translates into the union of sets:
P (X ≤ 5 or X ≥ 2) = P ({ω ∈ Ω : X(ω) ≤ 5} ∪ {ω ∈ Ω : X(ω) ≥ 2}).

Note: We may have multiple random variables, e.g. X could be a randomly chosen state’s minimum
wage, while Y their unemployment rate. Mathematically, these two random variables correspond to
functions X(·) and Y (·) applied to a common underlying outcome space Ω, which in this case cor-
responds to the set of US states. Probabilities like P (X ≤ $10 and Y ≤ 5%) are interpreted as
P ({ω ∈ Ω : X(ω) ≤ $10 and Y (ω) ≤ 5%}). If P ({ω}) = 1/50 for all ω, then this probability is in
turn equal to the number of states that have a minimum wage less than or equal $10 and an unemploy-
ment rate less than or equal 5%, divided by 50.

A.3 The distribution of a random variable

Main idea: The cumulative distribution function (CDF) provides a concise and convenient way
to represent the probability function of a random variable or of multiple random variables. From
the CDF we can define everything else we use to work with specific types of random variables,
for example probability density functions and probability mass functions.

A.3.1 Central concept: the cumulative distribution function

We can summarize the probability function over values of a random variable X through the so-called
cumulative distribution function or CDF of X.

Definition A.7. The cumulative distribution function of X is the function FX(x) := P (X ≤ x).

Note that FX(x) is a function from R to the unit interval [0, 1], that is FX(x) is defined for all x ∈ R and
FX(x) is always between zero and one. The following properties can be proven to hold for any random
variable X:

• FX(x) is a weakly increasing function, that is FX(x′) ≥ FX(x) if x′ > x

• limx↓−∞ FX(x) = 0

• limx↑∞ FX(x) = 1

• FX(x) is right-continuous, i.e. FX(x) = limε↓0 FX(x+ ε)

Note on notation: when the context is clear, we often denote a CDF as F (x) rather than FX(x). However,
when we have multiple random variables like X and Y , we may need the notation FX(x) and FY (y) to be
clear about which variable we are referring to. When using the notation F (x) for a CDF, keep in mind
that this is not the same “F” as we used to denote the event space of a generic probability triple (Ω, F, P ).

From the CDF, we can derive anything we’ll need to know about a single random variable. When we
have multiple random variables, the joint-CDF tells us everything we need to know about them.
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Definition A.8. The joint-CDF of two random variables X and Y is the function

FXY (x, y) := P (X ≤ x and Y ≤ y)

We’ll come back to the joint-CDF of two (or more) random variables in Section A.5.

Although the CDF F (x) of a random variable is a function of a single variable x, we can use it to recover
the probability that X lies in a set. For example, consider the set (a, b], that is all numbers between a
and b, including b itself.

Proposition A.1. For any numbers a and b such that b ≥ a, P (X ∈ (a, b]) = F (b)− F (a)

Proof. Given that P (A) = 1− P (Ac), (see Section A.1.2), we have that:

P (X ∈ (a, b]) = P (a < X ≤ b) = 1− P (X ≤ a or X > b)

Using the third property of a probability function, we have that P (X ≤ a or X > b) = P (X ≤ a)+P (X >
b), since the sets {x ∈ R : x ≤ a} and {x ∈ R : x > b} are disjoint. Thus:

P (X ∈ (a, b]) = 1− {P (X ≤ a) + P (X > b)} = P (X ≤ b)− P (X ≤ a) = F (b)− F (a)

where I’ve used that P (X ≤ b) = 1− P (X > b).

More generally, we can from the function F (x) compute the probability that X ∈ A for any Borel-
measurable set, that is a set A that belongs to the Borel σ−algebra. Sets that are simple intervals on
the real line like (a, b] are the leading example of such sets. Computing the probability associated with
more complicated sets that aren’t intervals is also possible using the CDF. The next section develops
two functions that can be derived from the CDF, and are sometimes easier to work with for such
computations.

A.3.2 Probability mass and density functions

Let X be a random variable with CDF F (x). We often refer to the whole function F as the distribution
of X. It always tells us everything we need to know about X. But there are two important special cases
in which we can represent the distribution of X in an alternative way that is often more convenient.

A.3.2.1 Case 1: Discrete random variables and the probability mass function

Call X a discrete set if X contains a finite number of elements, or a countably infinte number of elements
(e.g. X = N, the set of all integers).

Definition A.9. A discrete random variable X is a random variable such that P (X ∈ X ) = 1 for some
discrete set X .

Example: If X is the number returned by rolling a die, then X is a discrete random variable because
P (X ∈ {1, 2, 3, 4, 5, 6}) = 1.

For any random variable, we call the smallest set X for which P (X ∈ X ) the support of X. A discrete
random variable has as its support a discrete set.

When X is a discrete random variable, its CDF ends up looking like a staircase: flat everywhere except
at each x in its support, where it “jumps” up by an amount P (X = x). For example, for a six-sided die:

Note: The open/closed dots at e.g. x = 1 indicate the F (1) is equal to 1/6, and not 0 (although it is equal
to 0 for x arbitrarily close but to the left of 1). We see from this graph why CDFs are right-continuous
but not necessarily left-continuous.

At each point in its support {1, 2, 3, 4, 5, 6}, the CDF for the die jumps by P (X = x), or 1/6. This is
a general feature of discrete random variables. Thus, rather than use the CDF function F (x) to represent
the distribution of X, we can just keep track of where it jumps and by how much. To do this, we use
probability mass function or p.m.f. of X
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Figure A.1: The CDF of the number returned by a fair six-sided die.

Definition A.10. The probability mass function of a random variable X is the function π(x) = P (X =
x)

For a discrete random variable, we can express the p.m.f. alternatively as a sequence, rather than a func-
tion. Label the points in the support ofX as {x1, x2, x3, . . . }, in increasing order so that x1 < x2 < x3 . . . .
Let xj denote the jth value in this sequence. For any j, let πj = π(xj) = P (X = xj).

The sequence of probabilities {π1, π2, π3, . . . } coupled with the sequence of support points {x1, x2, x3, . . . }
carries exactly the same information as the full CDF.

Obtaining the p.m.f. from the CDF: For a given support point xj : πj = F (xj) − F (xj−1), and for any
x: π(x) = limε↓0 F (x) − F (x − ε). Note that π(x) = 0 for any x that is not a support point, and F is
continuous {x1, x2, x3, . . . }.

Obtaining the CDF from the p.m.f (only possible for a discrete random variable): F (x) =
∑
j:xj≤x πj .

Note that from this last expression, we can see that since limx→∞ F (x) = 1, we must have that
∑
j πj = 1

– probability mass functions sum to one when the sum is taken across all support points j.

A.3.2.2 Case 2: Continuous random variables and the probability density function

For random variables that are not discrete, knowing the probability mass function isn’t sufficient to
recover the whole CDF. Often P (X = x) = 0 for all x, so the p.m.f does not even really tell us anything
useful about X’s distribution.

An important class of random variables that are not discrete are random variables for whom the CDF
is differentiable for all x. When it is, we can define the probability density function or p.d.f. of X.

Definition A.11. The probability density function of a random variable X having a differentiable CDF
F (x), is f(x) = d

dxF (x).

We will refer to random variables that have a density function f(x) as continuous random variables
(another phrasing is that X is continuously distributed). Recall that for a function to be differentiable,
it must be continuous; thus, the CDF of a continuous random variable must be continuous, lacking any
jumps like those that characterize the CDF of a discrete random variable.

Note: you may see in various texts a few different notions of “continuity” of a random variable. For
the purposes of this class, a continuous random variable is a random variable with a continuous CDF,
which is basically equivalent to it being differentiable everywhere in its support. We won’t worry about
the distinction between these two things: e.g. random variables with CDFs that are continuous but
non-differentiable.
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For a continuous random variable we can use the p.d.f rather than the CDF to calculate anything we need
to know. For example the probability that X lies in any interval [a, b] can be obtained by integrating
over the density function:

P (X ∈ [a, b]) =

∫ b

a

f(x)dx (A.2)

Intuitively, this gives us the area under the curve f(x) between points a and b, as depicted in Figure

A.2. Note that
∫ b
a
f(x)dx = F (b)− F (a), because the CDF is the anti-derivative of the p.d.f.

a b

f
(x
)

P (X ∈ [a, b])

x

Probability density function f(x)

a b
0

F (a)

F (b)

1

P (X ∈ [a, b])

x

Cumulative distribution function F (x)

Figure A.2: The left panel depicts an example of the p.d.f. f(x) of a random variable X. The probability that
a ≤ X ≤ b is given by the area under the f(x) curve between x = a and x = b. P (a ≤ X ≤ b) is also equal to
F (b)− F (a), the difference in the CDF of X evaluated at x = b and at x = a, as depicted in the right panel.

While the probability mass function π(x) gives us the probability that X equals x exactly, the p.d.f
does not tell us the probability that X = x (in fact for any x: P (X = x) = 0 for a continuous random
variable!).

Rather f(x) can be interpreted as telling us the probability that X is close to x, in the following
sense. Consider a point x and some small ε > 0. Recall the definition of f(x) as the derivative of F (x):

f(x) =
d

dx
F (x) = lim

ε→0

F (x+ ε)− F (x)

ε
= lim
ε→0

P (X ∈ (x, ε])

ε

where we’ve used Proposition A.1 to replace F (x + ε) − F (x) with P (X ∈ (x, ε]). Thus f(x) is limit
of the ratio of the probability that X lies in a small interval that beings at x, and the width ε of that
interval. Note also that for small ε: F (x + ε) ≈ F (x) + f(x) · ε, which is called the first-order Taylor
approximation to F (x+ ε) around x.

Let us end this section with a few properties of a probably density function:

• From Eq. (A.2), we see that the density must integrate to one, when the integral is taken over the
whole real line, i.e.

∫∞
−∞ f(x)dx = 1.

• since F (x) is increasing and f(x) is its derivative, f(x) is positive everywhere: f(x) ≥ 0.

A.3.2.3 Case 3 (everything else): mixed distributions

Although most familiar examples of random variables are either discrete or continuous, a given random
variable X need not be either. However, a powerful result known as the Lebesque decomposition theorem
shows that we can combine the two tools we’ve just developed: the p.m.f. and the p.d.f., to work with
any random variable.

Definition A.12. Given two random variables X and Y with CDFs FX and FY , a third random variable
Z is called a mixture of X and Y if it has a CDF that for some p ∈ (0, 1) satisfies FZ(t) = p · FX(t) +
(1− p) · FY (t), for all t.
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The Lebesgue decomposition theorem says that a generic random variable X can be seen as a “mix-
ture” of a discrete random variable and a continuous one, that is

F (x) = p · Fdiscrete + (1− p) · Fcontinuous (A.3)

for some p ∈ (0, 1), where Fdiscrete admits of a probability mass function, and Fcontinuous admits of a
probability density function (i.e. is differentiable everywhere). The support points of Fdiscrete are often
referred to as mass points of F .

a b c
0

1

x

F(x)

Figure A.3: An example of the CDF of a mixed random variable. This example has mass points at a and c,
where the CDF jumps discretely. It is continuous everywhere else, and is differentiable everwhere except {a, b, c}.

There are some technical aspects to stating the Lebesque decomposition theorem formally, which we
won’t explore here. Rather, it’s easiest to think of this result visually: a generic CDF is any increasing
function bounded between 0 and 1 (which is also right-continuous). The jumps in F (x) define the discrete
part of X (note that it can only jump up, and not down, since F is increasing). The function F (x) will
be differentiable almost everywhere else, defining it’s continuous part.1

Note for the interested: to explicitly generate decomposition (A.3), first collect the locations xj and sizes
yj of each of the jumps j = 1, 2, . . . in F (x). Then π(xj) =

∑
j yj , and πj = yj/p yields a well-defined

p.m.f. function. This characterizes Fdiscrete. For any remaining point where F (x) is differentiable, we
define a density fcontinuous(x) = 1

1−p
d
dxF (x), which characterizes Fcontinuous. Note that there may be

points at which F (x) doesn’t jump, but also isn’t differentiable, such as point b in Figure A.3. We can
safely ignore such points, since they are isolated and have probability zero, e.g. P (X = {b}) = 0.

A.3.3 Marginal and joint distributions

Recall that when we have two random variables X and Y , we have defined the joint CDF FXY (x, y) =
P (X ≤ x, Y ≤ y) as well as the individual CDFs: FX(x) = P (X ≤ x) and FY (y) = P (Y ≤ y). The
functions FX and FY are often referred to as the marginal distributions of X and Y .

The following relationships hold between marginal and joint distributions:

• FX(x) = FXY (x,∞) = P (X ≤ x, Y ≤ ∞) = P (X ≤ x). Similarly, FY (y) = FXY (∞, y).

• If Y is discrete: P (X = x) =
∑
j P (X = x and Y = yj) where yj are the support points of Y

• If X and Y are both continuously distributed: fX(x) =
∫∞
−∞ fXY (x, y)dy, where the joint den-

sity fXY (x, y) is the derivative of the joint CDF with respect to both x and y: fXY (x, y) =
∂2

∂x∂yFXY (x, y).

1“Almost everywhere” here has a technical meaning. Any monotonic function is guaranteed to be differentiable every-
where except at isolated points: see Lebesque’s theorem for the differentiability of a monotone function.

98



Intuitively, we can obtain the marginal distribution of X from the joint distribution by summing or
integrating over all values of Y , and we can similarly derive the marginal distribution of Y from the joint
distribution of X and Y by summing/integrating over values of X.

The above results all follow from a fundamental identity for probabilities called the law of total probability :

Proposition (law of total probability): Consider a countable collection of events A1, A2, . . . that
partition the sample space (this means that the Aj are disjoint and that

⋃
j Aj = Ω). Then for any event

B: P (B) =
∑
j P (B ∩Aj).

Proof. The proof is good practice, so I include it here. Since any event B ⊆ Ω, B = B ∩ Ω and thus

P (B) = P (B ∩ Ω). Now, since
⋃
j Aj = Ω, we have that P (B) = P

(
B ∩ (

⋃
j Aj)

)
. Observe that

B ∩ (
⋃
j Aj) =

⋃
j(B ∩Aj), and that the events (B ∩Aj) are disjoint for different values of j (since each

is a subset of Aj). Thus, P (B) =
∑
j P (B ∩Aj), proving the result.

We can use the ideas of marginal and joint distributions to define the notion of independence between
two random variables:

Definition A.13. We say that random variables X and Y are independent if FXY (x, y) = FX(x) ·FY (y)
for all x and y.

When X and Y are independent, we denote this fact as X ⊥⊥ Y . When they are not, we say X 6⊥⊥ Y .

A.3.4 Functions of a random variable

An important property of random variables is that we can apply a function to a random variable, and
this results in a new random variable. For example, if we start with a random variable X, and have a
function g : R → R, then g(X) is also a random variable. For example, X + 1 defines a new random
variable that is one larger than X for all i.

The reason that we can do this is simple: the original random variable was defined from a function X
defined on an underlying outcome space Ω. Evaluating g(X(ω)) for any ω ∈ Ω yields a new function,
the so-called composition of g with X (this is often denoted as g ◦ f).

Technical note: Recall that the function X(ω) that defines the original random variable X must be a
measurable function. For the above logic to go through, the function g(·) applied to X must also be
measurable, so that the function g ◦ f = g(X(·)) is also measurable. A sufficient condition for a function
to be measurable is that it is piece-wise continuous, which is a very weak condition.

To work with a random variable Y = g(X), we need to know it’s CDF, which is:

FY (y) = P (Y ≤ y) = P (g(X) ≤ y)

This RHS expression can always be evaluated using the CDF of X. However, there are two important
special cases in which deriving the distribution of Y from that of X is particularly easy:

1. If X has a discrete distribution with support points x1, x2, . . . and p.m.f. π1, π2, . . . , then Y has
the same p.m.f. π1, π2, . . . but at new support points g(x1), g(x2), . . . .

• Example: if X is a random variable that takes value 0 with probability p and 1 with probability
1 − p, then the random variable Y = X + 1 is a random variable that takes value 1 with
probability p and 2 with probability 1− p.

2. (homework problem) If X has a continuous distribution with density fX(x), and if the function g(x)

is strictly increasing and differentiable with derivavtive g′, then Y has a density fY (y) = fX(g−1(y))
g′(g−1(y))

where g−1 is the inverse function of g.

• Example: if g(x) = log(x), then fY (y) = fX(ey) · ey, since g−1(y) = ey and g′(x) = 1/x.
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Just as a function applied to a random variable defines a new random variable, functions applied to
multiple random variables also yield a new random variable. For example, if X and Y are each random
variables, then Z = g(X,Y ) is also a random variable, where g(x, y) is now a function that takes two
arguments. Some examples would be the random variables X +Y , X ·Y , or min{X,Y }. When taking a
functions of two random variables, Z = g(X,Y ), we need the full joint distribution of X and Y to derive
the CDF of Z. Knowing the two functions FX(x) and FY (y) is generally not enough, rather we need to
know the function FXY (x, y) (see Definition A.8). This will come up later in the course.

A.4 The expected value of a random variable

Main idea: The expected value of a random variable is a measure of its average value across
realizations. In the special case of a continuous random variable, its value can be obtained by an
integral involving the density function. In the special case of a discrete random variable, its value
can be obtained by a sum involving the probability mass function.

The expected value (a.k.a. expectation value, or simply expectation) of a random variable is a measure
of its average value over all possible realizations. The expectation of X is denoted E[X].

To motivate how E[X] will be defined, think of task of computing the average of a list of numbers.
For example, the average of the numbers 1, 2, 2, and 4 is (1 + 2 + 2 + 4)/4 = 2. Notice that the number
2 occurred twice in the series, so we added 2 to the sum two times. We could thus have written the
averaging calculation as 1

4 (1 · 1 + 2 · 2 + 4 · 1), where each number is mulitplied by the number of times
it occurs in the list. The general formula could be written

average of a list of numbers =
∑

j

(jth distinct number ) ·# times jth distinct number occurs in the list

length of the list︸ ︷︷ ︸
wj

where notice that “weight” wj on the jth distinct number sums to one over all j, i.e.
∑
j wj = 1.

The definition of E[X] for a discrete random variable is exactly analogous to this formula, where we
average over the values xj that X can take, and use as “weights” the probabilities πj :

E[X] =
∑

j

xj · πj (A.4)

where x1, x2, . . . are the distinct support points of the random variable and πj is it’s p.m.f. Note that
the πj sum to one, as we saw in Section A.3.2.

In the case of a continuous random variable, the analogous expression to Eq. (A.4) replaces the sum
with an integral, and the probability πj = π(xj) is replaced by f(x)dx:

E[X] =

∫
x · f(x)dx (A.5)

The quantity f(x) · dx can be interpreted as the probability that X lies in an interval [x, x+ dx] having
a very small width dx, as discussed in Section A.3.2.

A.4.1 General definition*

We now give a general definition of the expectation of a random variable X, and see that Equations
(A.4) and (A.5) emerge as simple special cases of it when X is discrete or continuous, respectively.

Definition A.14. The expectation of a random variable X having CDF F (x) is E[X] =
∫∞
−∞ x · dF (x),

where we define the integral
∫∞
−∞ x · dF (x) as

∫ ∞

−∞
x ·dF (x) := lim

a→−∞,b→∞
lim
N→∞

N∑

n=1

{
a+ n · b− a

N

}
·
{
F

(
a+ n · b− a

N

)
− F

(
a+ (n− 1) · b− a

N

)}
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The quantity
∫∞
−∞ x · dF (x) in an example of a Riemann–Stieltjes integral, in which we “integrate‘with

respect to the function” F (x) rather than with respect to the variable x. Let’s try to unpack this long
expression, with the aid of the color-coding above.

First, let’s fix values of a, b,N and consider the quantity appearing inside all of the limits. For given
b > a, imagine cutting the interval [a, b] into N regions of equal size, so that they each have width b−a

N .

The nth such region extends from the value a+ (n− 1) · b−aN to the value a+n · b−aN . Note the following:

• F
(
a+ n · b−aN

)
− F

(
a+ (n− 1) · b−aN

)
yields P (X ∈ region n).

•
{
a+ n · b−aN

}
is the location of (the right end of) region n.

• limN→∞ takes the sum to an integral, and the a, b limit covers full support of X.

Thus, we can interpret E[X] as an integral of the function x over the whole real line, in which each value
of x is multiplied by the probability that X is very close to x, essentially F (x+ dx)− F (x).

Discrete case: Now let’s see how Definition A.14 yields Eq. (A.4) in the special case that X is a discrete
random variable. Let x1, x2 . . . be the support points of X. Notice that for large enough N , only one xj
can be between a+ n−1

N (b− a) and a+ n
N (b− a). Thus: F

(
a+ n

N (b− a)
)
− F

(
a+ n−1

N (b− a)
)

= πj if
xj lies in the nth region. If on the other hand no xj lies in the nth region, this quantity is equal to zero.
We arrive at one term for each value xj , and E[X] =

∑
j xj · πj .

Continuous case: When X is a continuous random variable with density f(x), we can recover Eq. (A.4)
by noticing that for large N :

F
(
a+

n

N
(b− a)

)
− F

(
a+

n− 1

N
(b− a)

)
≈ f

(
a+

n

N
(b− a)

)
· b− a
N

Substituting in this approximation delivers the familiar formula that E[X] =
∫∞
−∞ x · f(x)dx.

Exercise: Consider a so-called Bernoulli random variable X that takes a value 1 with probability p and
0 with probability 1− p. Show that E[X] = p.

Exercise: Consider a uniform [0, 1] random variable, that is a continuous random variable with density
f(x) = x for all 0 ≤ x ≤ 1, and f(x) = 0 everywhere else. Show that E[X] = 1/2.

A key property of the expectation operator that is very useful is that it is linear. It’s actually “linear”
in a few distinct senses:

1. Linearity with respect to functions of a single variable: E[a+ b ·X] = a+ b ·E[X]

2. Linearity over sums of random variables: E[X + Y ] = E[X] +E[Y ].

3. Linearity with respect to mixtures: if X, Y and Z are random variables such that FZ(t) = p ·
FX(t) + (1− p) · FY (t), then E[Z] = p ·E[X] + (1− p) ·E[Y ].

Note that because of Property 2, we can compute the expectation value of the random variable X + Y
knowing only the CDFs FX(x) and FY (y), without needing the full joint-CDF FXY (x, y) of X and Y .
This is a very special property of the expectation, which doesn’t hold for most of the things we might
want to know about the random variable X + Y (for example P (X + Y ≤ t)).

Property 3. gives us a nice way to evaluate the expectation value of a random variable that is neither
discrete nor continuous. Recalling decomposition (A.3) of a general mixed random variable, let f c(x) be
the density of the continuous part Fcontinuous and let xdj and πdj denote the support points and associated
probabilities according to the discrete part Fdiscrete. Then:

E[X] =

∫ ∞

−∞
x · dF (x) = p ·




∑

j

xdj · πdj



+ (1− p) ·

∫ ∞

−∞
x · f c(x) · dx
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A.4.2 Application: variance

From the expectation operator, we can also define the variance of a random variable, which measures
how “dispersed” it is. We’ll see that the variance plays an important role in asymptotic theory.

Definition A.15. The variance of X is the expected value of the random variable (X − E[X])2, i.e.
V ar(X) := E[(X −E[X])2].

The variance of X can be interpreted as the average value of the squared distance between X and its
expectation E[X]. Note that V ar(X) ≥ 0 for any random variable, with V ar(X) = 0 only when X takes
one value with probability one (i.e. X is a so-called degenerate random variable).

Exercise: Use the linearity of the expectation operator to prove the following (very useful) alternative
expression for the variance: V ar(X) = E[X2]− (E[X])2.

Exercise: Show that for a Bernoulli random variable (defined above), the variance is equal to p · (1− p).

A.5 Conditional distributions and expectation

In this section we develop a final fundamental tool that we will use to analyze random variables: the
idea of conditional distributions and conditional expectations.

Main idea: Conditioning on an event allows us to examine a restricted probability space in
which that event is true (but other things are still random). When this idea is applied to random
variables, we can define conditional distributions that we can work with in all of normal ways.

A.5.1 Conditional probabilities

We begin with a concept that applies to all probability spaces, not just to random variables.

Definition A.16. Given an event B such that P (B) > 0, the conditional probability of event A given
B is defined as

P (A|B) =
P (A ∩B)

P (B)

where recall that the intersection of two events A∩B can be interpreted as the event that both of events
A and B occur. This definition is often referred to as Bayes’ rule. You can think of Bayes’ rule as a way
to define a probability function using B as the whole outcome space: yielding a way to talk about the
probability that ω ∈ A, given that ω ∈ B.

Extension: Given events A, B and C, we can also define the probability of A given B and C as
P (A|B ∩ C) = P (A ∩B ∩ C)/P (B ∩ C), and so on for any number of events.

Exercise: We call events A and B independent if P (A ∩ B) = P (A) · P (B). Suppose that P (B) > 0.
Show that A and B are independent if and only if P (A|B) = P (A).

A.5.2 Conditional distributions

Consider now two random variables X and Y .

Definition A.17. The conditional CDF of Y given X = x is

FY |X=x(y) := P (Y ≤ y|X = x) := lim
ε↓0

P (Y ≤ y|X ∈ [x, x+ ε])

where the conditional probability appearing in the RHS is defined by Definition A.16.

Notation: The conditional CDF will sometimes also be denoted as FY |X(y|X).

We define P (Y ≤ y|X = x) using X ∈ [x, x+ ε] as our conditioning event B, and then taking the limit,
because the probability of X = x may be zero, e.g. for a continuously distributed X. Note: The Hansen
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book uses x ∈ [x− ε, x+ ε] instead of x ∈ [x, x+ ε], but the two definitions are equivalent.

Given the general Definition A.17, we can consider each of our two typical special cases:

• When P (X = x) > 0 (e.g. for a discrete random variable with a support point at x), Definition

A.17 reduces to the simpler expression P (Y ≤ y|X = x) = P (Y≤y and X=x)
P (X=x) . We can interpret

FY |X=x(y) as the CDF among the sub-population of i for which X = x.

• If on the other hand fX(x) = d
dxFX(x) exists (e.g., for a continuous random variable), then

Definition A.17 simplifies to P (Y ≤ y|X = x) =
d
dxP (Y≤y,X≤x)

fX(x) . We can interpret FY |X=x(y) as

the CDF among the sub-population of i for which X is “very close” to x.

Exercise: derive each of these two expressions from Definition A.17 . For the discrete case, you may find

useful the “quotient rule” that limt→0
g(t)
h(t) = limt→0 g(t)

limt→0 h(t) when both limits exist and limt→0 h(t) 6= 0. For

the continuous case, try dividing both the numerator and the denominator of P (Y ≤ y|X ∈ [x, x + ε])
by ε before taking the limit.

Exercise: Show that if X and Y are independent then FY |X=x(y) = FY (y) and FX|Y=y(x) = FX(x) for
all x and y. Note: it’s actually an if-and-only-if, but proving the other direction is more difficult.

A.5.3 Conditional expectation (and variance)

Consider a fixed value of x, and view the conditional CDF FY |X=x(y) as a function of y. This function
satisfies the four properties of a CDF mentioned in Section A.3.1: it is weakly increasing, right-continuous,
and ranges from zero to one.

Thus, we can define the expectation over this distribution in exactly the same way as we would for
E[Y ] based on Definition A.14, except that use FY |X=x(y) as the CDF rather than it’s “unconditional”
analog F (y). We can write this using the general notation of Definition A.14 as:

E[Y |X = x] =

∫ ∞

−∞
y · dFY |X=x(y)

We can unpack this expression depending on what type of random variable Y is:

• If Y is continuous: E[Y |X = x] =
∫∞
−∞ y · fY |X=x(y) · dy, where fY |X=x(y) = d

dyFY |X=x(y).

• If Y is discrete: E[Y |X = x] =
∑
j yj ·πj|X=x, where πj|X=x = limε↓0

{
FY |X=x(yj)− FY |X=x(yj − ε)

}
.

Observe that the conditional expectation E[Y |X = x] depends on x only, as we’ve averaged over various
values of Y . Accordingly, we can define a function that evaluates E[Y |X = x] over different values of x:

Definition A.18. The conditional expectation function (CEF) of Y given X is m(x) := E[Y |X = x].

We can also use the CEF to define a new random variable, denoted E[Y |X].

Definition A.19. E[Y |X] = m(X), where m(x) := E[Y |X = x].

For example, if X is discrete, then E[Y |X] takes value m(xj) = E[Y |X = xj ] with probability πj .

The so-called law of iterated expectations shows that the expectation value of E[Y |X] recovers the (un-
conditional) expectation of Y :

Proposition (law of iterated expectations): E[Y ] = E [E[Y |X]]

Proof. We prove it for the case in which both X and Y are continuous random variables. The other
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cases are analagous so I leave them as an exercise.

E [E[Y |X]] =

∫

x∈R:fX(x)>0

fX(x) · E[Y |X = x] · dx

=

∫

x∈R:fX(x)>0

fX(x) ·
{∫

y∈R
y · fY |X(y|x) · dy

}
· dx

=

∫

x∈R:fX(x)>0
���fX(x) ·

{∫

y∈R
y · fXY (x, y)

���fX(x)
· dy
}
· dx

=

∫

y∈R
y ·
{∫

x∈R:fX(x)>0

fXY (x, y) · dx
}

︸ ︷︷ ︸
= fY (y) · dy =

∫

y∈R
y · fY (y) · dy = E[Y ]

The law of iterated expectations is useful because in many settings the quantity E[Y |X = x] is easier to
work with than [Y ] is directly.

Example: Suppose that Y is individual i’s height and X is an indicator for whether they are a child or
an adult. Then the law of iterated expectations tells us that the average height in the population can
be obtained by averaging together the mean height among children with the mean height among adults.
Suppose that 75% of the population are adults. Then the law of iterated expectations reads as:

E[height] = .75 ·E[height|adult] + .25 ·E[height|child]

Proposition (CEF minimizes mean squared prediction error): Suppose we’re interested
in constructing a function g(·) with the goal of using g(X) as a prediction of Y . We can show
that m(x) := E[Y |X = x] is the best such function, in the sense that for each value of x

m(x) = argmingE[Y − g(X))2]

Proof. Here I’ll use the general notation so we don’t need to make any assumptions about what
type of random variable X is (discrete, continuous, etc.):

E[(Y − g(X))2] = E
{
E[(Y − g(X))2|X]

}
=

∫
E[(Y − g(X))2|X = x] · dF (x)

=

∫
E[(Y − g(x)2|X = x] · dF (x) =

∫
E[Y 2 − 2Y g(x) + g(x)2|X = x] · dF (x)

=

∫ {
E[Y 2|X = x]− 2g(x)E[Y |X = x]g(x) + g(x)2

}
· dF (x)

For each value of x, the quantity in brackets is minimized by g(x) = E[Y |X = x]. To see this,
note that the quantity E[Y 2|X = x] − 2gE[Y |X = x]g + g2 is a convex function of g, and the
first-order condition for minimizing it is satisfied when g = E[Y |X = x].

We can also define a conditional variance function V ar(Y |X = x) = E[(Y − E[Y |X = x])2|X = x]
from the conditional distribution FY |X=x. An analog to the law of iterated expectations exists for the
conditional variance, which is sometimes called the law of total variance.

Proposition (law of total variance): V ar(Y ) = E[V ar(Y |X)] + V ar(E[Y |X]).

Example: Recall the height example from the law of iterated expectations. The law of total variance
reveals that the variance of heights in the population overall is greater than what we would get by just
averaging the variances of each subgrup. That is:

V ar(height) > .75 · V ar(height|adult) + .25 · V ar(height|child)

The reason is that V ar(height) involves making comparisons directly between the heights of children
and adults, which are not captured in V ar(Y |X = x) for either value of x. The law of total variance
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tells us exactly what correction we would need to make, which is to add the second term V ar(E[Y |X]).
Remarkably, the correction required just depends on the average height within each group E[Y |X = x],
as well as the proportion of adults vs. children: P (X = x).

A.6 Random vectors and random matrices

Main idea: Random vectors are vectors in which each component is a random variable, and
random matrices are matrices where each entry is a random variable. These concepts allow us
to define the expectation, variance, and covariance between random vectors, which gives us a
compact notation to discuss many random variables at the same time.

A.6.1 Definition

Rather than coming up with new lettersX,Y, Z for multiple random variables, sometimes a more compact
notation is to think of a single “random vector” containing all three.

Definition A.20. A random vector X is a vector in which each component is a random variable, e.g.

X =




X1

X2

...
Xk




where X1, X2, etc. are each random variables.

Note the following:

• A realization x of random vector X is a point in Rk, i.e. x = (x1, x2, . . . , xk)′:

P (X = x) = P (X1 = x1 and X2 = x2 . . . and . . . Xk = xk)

• For a random vectorX, the function FX denotes the joint-CDF of the random variablesX1, X2, . . . Xk:

FX(x) = P (X1 ≤ x1 and X2 ≤ x2 . . . and . . . Xk ≤ xk)

• The expectation of a random vectorX is simply the vector of expectations of each of its components,
i.e.

E[X] =







X1

X2

...
Xk





 :=




E[X1]
E[X2]

...
E[Xk]




• The law of iterated expecations E[Y ] = E [E[Y |X]] still holds when X is a random vector, rather
than a random variable.

.

Definition A.21. An n×k random matrix X is a matrix in which each component is a random variable,
e.g.

X =




X11 X12 . . . X1k

X21 X22 . . . X2k

...
...

. . .
...

Xn1 Xn2 . . . Xnk




where Xlm, is a random variable for each entry lm.
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Just as with a random variable, we define the expectation of a random matrix as a matrix composed
of the expectation of each of it’s components, i.e.

E[X] =




E[X11] E[X12] . . . E[X1k]
E[X21] E[X22] . . . E[X2k]

...
...

. . .
...

E[Xn1] E[Xn2] . . . E[Xnk]




This allows us to generalize the notion of variance to random vectors.

Definition A.22. The variance of a random vector X is V ar(X) = E[(X −E[X])(X −E[X])′]

where use the notation that for a vector x: x′ indicates its transpose (x1, x2, . . . xk). Note that for vectors
x = (x1 . . . xn)′ and y = (y1 . . . yk), xy′ is an n × k matrix, where the lm component of xy′ is xl · ym.
We will also use ′ to denote the matrix transpose, i.e. [X ′]lm = Xml.

Note that when X is a random vector rather than a random variable, V ar(X) is often referred to as
the “variance-covariance matrix” of X. We’ll use the variance-covariance matrix a lot, because it plays
an important role in studying parametric distributions like the multivariate normal distribution, and in
asymptotic theory.

To understand the name, let us first define the covariance between random vectors X and Y :

Definition A.23. The covariance of random vectors X and Y is Cov(X,Y ) = E[(X−E[X])(Y −E[Y ])′]

Note the following properties of covariance:

• For random vector X: V ar(X) = Cov(X,X)

• When X and Y are scalars (i.e. single random variables), Cov(X,Y ) = E[(X −E[X])(Y −E[Y ])]

• For scalar X and Y , and numbers a, b: Cov(X, a+ bY ) = b · Cov(X,Y )

• For a random vector X, the components of the matrix V ar(X) are scalar variance and covariances,
hence its name:

V ar(X) =




V ar(X1) Cov(X1, X2) . . . Cov(X1, Xk)
Cov(X2, X1) V ar(X2) . . . Cov(X2, Xk)

...
...

. . .
...

Cov(Xk, X1) Cov(Xk, X2) . . . V ar(Xk, Xk)




A consequence of this expression is that V ar(X) is a symmetric matrix: [V ar(X)]lm = [V ar(X)]ml,
because Cov(Xl, Xm) = Cov(Xm, Xl).

• When X and Y are scalars, we can define the correlation coefficient ρXY as Cov(X,Y )√
V ar(X)V ar(Y )

(note

that all quantities involved here are scalars). ρXY is always a number between −1 and +1 (home-
work problem).

Exercise: Show that Cov(X,Y ) = E[XY ′]−E[X]E[Y ]′

A.6.2 Conditional distributions with random vectors

A.6.2.1 Conditioning on a random vector

In Section A.5 we defined the conditional distribution of one random variable Y given another random
variable X. This idea extends naturally to conditioning a random variable Y on multiple random
variables at the same time, e.g. FY |X=x,Z=z(y). Random vectors give us a nice notation for this:

Definition A.24. With X a random vector, the conditional CDF of random variable Y given X = x is

FY |X(y|x) = lim
ε1↓0
ε2↓0
...
εk↓0

P (Y ≤ y|X1 ∈ [x1, x1 + ε1], X2 ∈ [x2, x2 + ε2] . . . Xk ∈ [xk, xk + εk])

where x = (x1, x2, . . . xk)′.
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We can always use the above definition, even if the components of X can be a mix of continuous and
discrete random variables.

For any given value of x, FY |X=x(y) = FY |X(y|x) yields a proper CDF function for y, which means

we can continue to define the conditional expectation as E[Y |X = x] =
∫∞
∞ y · dFY |X=x(y), where the

meaning of this integral is as given in Definition A.14. The conditional variance of Y given X = x can
also be defined in the typical way from the conditional distribution FY |X=x(y).

The law of iterated expectations caries over unchanged when X is a random vector. That is: E[Y ] =
E[E[Y |X]], regardless of whether X has continuous or discretely distributed components, or a mix of
the two. The law of total variance caries over too (see below).

Understanding and estimating the object E[Y |X = x] from data, where X can be a vector, will be one
of our main interests in this course, motivating the use of regression analysis. Take a deep breath, we
made it!

A.6.2.2 The conditional distribution of a random vector

This section can be skipped for now, but later in the course we’ll need to talk about joint-distribution
of a random vector, conditional on the value of one or more other random variables.

When both X and Y are random vectors, we can talk about the conditional distribution of Y given X
by defining a conditional joint-CDF of all the components of Y , conditional on X = x.

Definition A.25. With X and Y random vectors, the conditional CDF of Y given X = x is

FY |X(y|x) = lim
ε1↓0
ε2↓0
...
εk↓0

P (Y1 ≤ y1, Y2 ≤ y2, . . . |X1 ∈ [x1, x1 + ε1], X2 ∈ [x2, x2 + ε2] . . . Xk ∈ [xk, xk + εk])

where x = (x1, x2, . . . xk)′.

An important application of the concept of a conditional joint-distribution is the idea of conditional
independence.

Definition A.26 (conditional independence). We say that X and Y are independent conditional
on Z, denoted (X ⊥⊥ Y )|Z, if for any value z of Z: FXY |Z=z(x, y) = FX|Z=z(x) · FY |Z=z(y) for all x, y.

This definition can be understood by using Definition A.25 to define interpret FXY |Z=z(x, y) as the joint-
CDF of a random vector composed of X and Y , conditional on the random vector Z. In this definition
X and Y could be random variables or can each be random vectors themselves!

As another application of Definition A.25, the law of total covariance provides an analog of the law of
iterated expectations for covariance (and hence, as a special case, for variance):

Proposition A.2. For random vectors X, Y and Z: Cov(X,Y ) = E[Cov(X,Y |Z)]+Cov(E[X|Z],E[Y |Z])]

Note that as a special case we have the law of total variance, that: E[V ar(Y |X)] + V ar(E[Y |X]).
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Appendix B

Asymptotic theory

In Appendix A, we’ve developed the idea of a random vector, which has a probability distribution that
can be characterized by the joint-CDF of all of its components. This allows us to then define concepts
like expectation, conditional distributions, and the conditional expectation function.

In this section we use probability to study the properties of a sample of data. Consider for example a
collection of observations regarding 5000 young working women in the 1970s-80s.1 This chapter develops
tools that let us address the following question: what are we learning about the population of young
working women in this time period, given our sample? In doing so we move from the theory of probability
to the theory of statistics, which studies what we can learn about probability distributions from data.

B.1 The idea of a random sample

The simplest (and most common) framework in which to develop statistical results is using the notion
of a independent and identically distributed (i.i.d.) sample.

Definition B.1. A collection of random vectors {X1, X2, . . . Xn} are called independent and identically
distributed (i.i.d.) if Xi ⊥⊥ Xj for i 6= j and each Xi has the same marginal distribution as the others.

When a collection of random vectors are independent of one another, as with an i.i.d. collection know-
ing the CDF F for each member Xi of the collection is sufficient to recover the full joint-distribution of
the collection. For example, let n = 2 and suppose both X1 and X2 are i.i.d random variables (rather
than vectors). Then P (X1 ≤ x1, X2 ≤ x2) = P (X1 ≤ x1) · P (X2 ≤ x2) = F (x1) · F (x2), where F (·) is
the marginal CDF function of each of the Xi. With an i.i.d. collection, we only need to know the CDF
F that applies to each of the Xi, in order to know anything about the collection.

The i.i.d. model is typically used to describe simple random sampling. Simple random sampling oc-
curs when individuals are selected at random from some underlying population I, and a set of variables
Xi = (X1i, X2i, . . . Xki)

′ are recorded for each sampled individual i. Imagine for example a telephone
survey, in which enumerators have a long list I of potential individuals to contact. They use a random
number generator to choose an i at random from this list, contact them, and record responses to a set
of k questions. This process is then repeated n times.

Note: With a finite population I, we must allow sampling “with replacement” for the i.i.d. model to hold
strictly. If individual i is removed from the list after being contacted, then the random vectors Xi may
no longer be independent. For example, suppose we are randomly selecting U.S. states and recording
the population of each one. Suppose California (the post populous state) has 40 million and Georgia has
11. Then for example P (X2 = 40m|X1 = 40m) 6= P (X2 = 40m|X1 < 40m), since the first probability is
zero and the second is 1/49. This means that X1 and X2 are not independent. Simple random sampling
is often referred to as random sampling for short, or as i.i.d sampling.

We’ll use the terms dataset or sample to refer to an n × k matrix X that records characteristics Xi =
(X1i, X2i, . . . Xki) for each of n observational units (such as individuals) i. Data is not always generated

1A dataset fitting this description can be easily loaded into Stata using the command wenuse nlswork, which comes
from the U.S. Bureau of Labor Statistics’ National Longitudinal Survey.

108



by simple random sampling, but when it is, we can imagine X as being formed by randomly choosing
rows from a much larger matrix that records Xi for all individuals in the population, depicted in Figure
B.1. The actual data we see in X is a realization of the collection of random variables {X1, X2, . . . Xn}.

X =




X ′1
X ′2
...
X ′n


 =




(X11, X21, . . . Xk1)
(X12, X22, . . . Xk2)

...
(X1n, X2n, . . . Xkn)




The randomness of X comes from the random-sampling: we could have drawn a different set of individ-
uals from the population, in which case we would have seen a different dataset X.

Notation: Note that the entries of the sample matrix X are denoted Xji, where i index rows (individual
observations) and j index columns (variables/characteristics). This is backwards from the way we often
denote entries Mij of a matrix M, where the row i comes before the column j. This is a consequence of
two conventions interacting: that rows of X index individuals (just like when you open the dataset in
R), but that Xji indexes characteristic j of individual i (equivalently, characteristic j of the individual
sampled in row i).

Sample X

row i ωi agei marriedi collegei
1 1 25 0 0

2 4 37 1 1

3 5 54 0 1

Population I

individual i agei marriedi collegei
1 25 0 0
2 74 1 1
3 8 0 0

4 37 1 1

5 54 0 1

Figure B.1: An example of simple random sampling, in which n = 3 and N = 5. Each row of the dataset
on the left is a realization of random vector X = (age,married, college), which chooses a row at random from
the population matrix on the right. We can conceptualize this sampling process as a probability space with
outcomes ω = (ω1, ω2, ω3), where ωi yields the index of the randomly selected individual in I. The random
vectors Xi = Xi(ωi) and Xj = Xj(ωj) are independent for i 6= j, but the random variables within a row are
generally not independent, e.g. agei and collegei are positively correlated.

Note that most sampling processes in the real world occur without replacement: the same individual
cannot show up twice in the data. Given the note above, this suggests that these sampling processes
are not i.i.d., strictly speaking. However, when the size N of the underlying population is large, such
samples can still be well-approximated as being i.i.d.. Intuitively, that’s because when N is much larger
than n (often denoted as N >> n), the chance that you would draw the same individual twice is very
low. We thus typically assume i.i.d., with the idea that N is suitably large to not worry about sampling
with vs. without replacement.

The following are some alternative methods of generating data, aside from simple random sampling:

• Stratified random sampling : the population is divided into groups, and then simple random sam-
pling occurs within each group (e.g. I run my sampling algorithm separately for men and women,
so that I can ensure equal representation of each).

• Clustered random sampling : after defining groups, we randomly select some of the groups. Then all
individuals from those groups are included in the sample (e.g. I interview everybody in a household,
after choosing households at random)

• Panel data: suppose we have observations over multiple time-periods t for each individual i, where
the individuals i are drawn as a simple random sample. Then if we arrange all of i’s data onto one
row, we can imagine X as reflecting an i.i.d. sample. But with rows correponding to (i, t) pairs,
the rows are no longer independent (in general)
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• Observing the whole popluation: this would be the case e.g. with state-level data from all 50 U.S.
states. This situation occurs increasingly frequently with individual-level data now as well, e.g.
administrative data on all tax-filers in a country.

These alternative sampling methods tend to violate the i.i.d assumption. However, methods exist to
deal with each of them.

Let us end this section with a last bit of jargon. When Xi for i = 1 . . . n denotes a collection of i.i.d
random vectors, we’ll refer to the distribution F that describes the marginal distribution of each Xi as
the population distribution. The population distribution is the distribution we get when we randomly
select any individual from the population. Features of the population distribution are the ones that
you naturally think of when you think about summarizing a population. For example, if I is a finite
population, then

EF [Xi] =
1

N

∑

i∈I
Xi

where we use the notation EF to make explicit that the expectation is with respect to the CDF F . Nor-
mally, we won’t write F explicitly. The population mean is simply the mean of Xi among everybody in I.

Another piece of terminology will be useful as we discuss samples and their population counterparts:

Definition B.2. A statistic or estimator is any function of the sample X = (X ′1, X
′
2, . . . , X

′
n)′.

A generic estimator or statistic will apply some function g(X) = g(X1, X2, . . . Xn) to the collection of
random vectors that constitute the sample. An example is the so-called sample mean X̄n := 1

n

∑n
i=1Xi,

which simply adds together Xi for across the sample and divides by the number of observations n. X̄n

is an example of a statistic. Since each of the Xi is a random variable/vector, it follows that X̄n is itself
a random variable/vector. This is true of statistics in general: they are random.

The reason that we also refer to statistics as “estimators” is that statistics often attempt to estimate a
population quantity of some kind from data. For example, we’ll see in the next Chapter that for large
n, we are justified in thinking that X̄n ≈ µ. It is therefore reasonable to use X̄n as an estimate of µ.
Note that X̄n is random, while µ is just a fixed number. Thus we have to be careful in what we mean
by saying that X̄n ≈ µ, which is the topic of the next chapter.

Notation: Often estimators are depicted with a “hat” on them, e.g. θ̂ = g(X). We’ll use this notation
to denote a generic estimator.

A useful property of i.i.d. random vectors that I’ll mention here is the following:

Proposition B.1. If {X1, X2, . . . Xn} are i.i.d random vectors, then {h(X1), h(X2), . . . h(Xn)} are also
i.i.d for any (measurable) function h.

An implication of Proposition B.1 is that if we have an i.i.d. sample Xi, we can from it construct an
i.i.d. sample of e.g. X2

i .

B.2 The law of large numbers

Consider an i.i.d. sample {X1, . . . Xn} of some random variable Xi. The sample average of Xi in our
data simply takes the arithmetic mean across these n observations:

X̄n :=
1

n

n∑

i=1

Xi

The law of large numbers (LLN) states the deep and useful fact that for very large n, it becomes very
unlikely that X̄n is very far from µ = E[Xi], the “population mean” of Xi.

Theorem 4 (law of large numbers). If Xi are i.i.d random variables and E[Xi] is finite, then for
any ε > 0:

lim
n→∞

P (|X̄n − µ| > ε) = 0
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Note: The LLN is stated above for a random variable, but the result generalizes easily to random
vectors. In that case, limn→∞ P (||X̄n − µ||2 > ε) = 0 where || · ||2 denotes the Euclidean norm, i.e.:
|X̄n − µ| = (|X̄n − µ|)′(|X̄n − µ|), where X̄n is a vector of sample means for each component of Xi, and
similarly for µ.

Note: the version of the law of large numbers above is called the weak law of large numbers. There exists
another version called the strong LLN.

Let us now prove the LLN. We will do so using a tool called Chebyshev’s inequality. This proof assumes
that V ar(Xi) is finite, but the LLN holds even if V ar(Xi) =∞. Chebyshev’s inequality allows us to use
the variance of a random variable to put an upper bound on the probability that the random variable is
far from its mean. In particular, for any random variable Z with finite mean and variance:

P (|Z −E[Z]| ≥ ε) ≤ V ar(Z)

ε2

To see that this holds, use the law of iterated expectations to write out the variance as

V ar(Z) = E
[
Z −E[Z])2

]
= P (|Z −E[Z]| ≥ ε) ·E

[
(Z −E[Z])2|(Z −E[Z])2 ≥ ε2

]

+ P (|Z −E[Z]| < ε) ·E
[
(Z −E[Z])2|(Z −E[Z])2 < ε2

]

≥ P (|Z −E[Z]| ≥ ε) · ε2 + P (|Z −E[Z]| < ε) · 0,
noting that |Z −E[Z]| ≥ ε iff (Z −E[Z])2 ≥ ε2.

Now, we will show that as n → ∞, V ar(X̄n) → 0. This along with Chebyshev’s inequality implies the
LLN, by letting Z = X̄n.
To see that V ar(X̄n)

n→ 0, note first that

E[X̄n] = E

[
1

n

n∑

i=1

Xi

]
=

1

n

n∑

i=1

E [Xi] =
1

n

n∑

i=1

µ = µ

The first equality is simply the definition of X̄n, while the second uses linearity of the expectation
operator. Now consider

V ar(X̄n) = E
[
(X̄n −E[X̄n])2

]
= E

[
(X̄n − µ)2

]
= E



(

1

n

n∑

i=1

(Xi − µ)

)2



=
1

n2
E




n∑

i=1

n∑

j=1

(Xi − µ)(Xj − µ)


 =

1

n2

n∑

i=1

n∑

j=1

E [(Xi − µ)(Xj − µ)]

=
1

n2

n∑

i=1

E [(Xi − µ)][(Xi − µ)] =
1

n2
· nV ar(Xi) =

V ar(Xi)

n

where the first equality in the third line follows because when i 6= j, Xi ⊥⊥ Xj implies that E[(Xi − µ)] ·
E[(Xj − µ)] = 0 · 0. Thus, the only terms that remain are when j = i.

Another way to see that V ar(X̄n) = V ar(Xi)
n is to notice that when Y and Z are independent,

V ar(Y + Z) = V ar(Y ) + V ar(Z). Thus:

V ar

(
1

n
X1 +

1

n
X2 + · · ·+ 1

n
Xn+

)
= n · V ar

(
1

n
Xi

)
= n · 1

n2
· V ar(Xi) =

V ar(Xi)

n

B.3 Asymptotic sequences

The law of large numbers provides a way to justify the claim that when n is large, X̄n will be close to µ
with high probability. The approximation X̄n ≈ µ lies at the heart of our claims to be learning about
an underlying population when we have a large sample.

In the next section, we’ll see that there is more than one way to develop a large-n approximation
to the distribution of a random variable. To talk about such approximations, it is useful to introduce
the idea of a sequence of random variables Zn, where n = 1, 2, . . .∞. For example, we can consider the
sample mean X̄n—which is a random variable for any given n—across various possible sample sizes n.
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B.3.1 The general problem

The primary motivation for considering such asymptotic sequences of random variables Zn is when Zn
represents a statistic θ̂—something that depends upon my data (see Definition B.2). Since θ̂ is random
(it depends on the sample that I drew), I’d like to know something about its distribution. For example,
how likely is it that my sample mean is far from the population mean?

Definition B.3. The sampling distribution of an statistic θ̂ is its CDF: Fθ̂(t) = P (θ̂ ≤ t).

When our statistic is computed as θ̂ = g(X1, X2, . . . Xn) from an i.i.d sample of Xi, Fθ̂ depends upon
three things: the function g, the population distribution of Xi, and the sample size n.

Knowing the sampling distribution of a statistic is typically a hard problem. We know g and n,
but in a research setting we don’t generally know the CDF F that describes the underlying population.
However, if we view θ̂ as a point along a sequence of random variables Zn, it is often possible to say
something about the limiting behavior of FZn as n→∞. Asymptotic theory is a set of tools for describing
this limiting behavior. The law of large numbers is one such tool. If we believe that are actual sample
size n is large enough that FZn ≈ FZ∞ , then tools like the LLN can be extremely useful. For the sample
mean for example, we might, on the basis of the LLN, be prepared to believe that X̄n is close to µ with
very high probability.

Conceptually, we can think of what we’re doing as follows. Suppose our sample size is n = 10, 576,
and we calculate a statistic θ̂ = g(X1, X2, . . . X10,576) from our sample. Now imagine applying the
same function g to various samples of size 1, 2, . . . and so on, and defining a sequence Z1, Z2, Zn of the
corresponding values. Each Z along this sequence is itself a random variable: let FZ1

, FZ2
, . . . be their

corresponding CDFs. Our statistic θ̂ can be seen as a specific point along this sequence: θ̂ = Z10,576

(circled in red in Figure B.2). Since we don’t know FZ10,576 , but we can say something about FZ∞ , we
use the latter as an approximation for the former. Figure B.2 depicts this logic.
Of course, the above technique only works if we can say something definite about F∞. The law of large
numbers says that we can when our statistic is the sample mean. In Section B.5, we’ll see that the central
limit theorem provides even more information about the limiting distribution of the sample mean: that
it will become approximately normal, regardless of F .

Note: The logic of Figure B.2 is the “classical” approach to approximating the sampling distri-
bution of θ̂, but it is certainly not the only one. An increasingly popular alternative involves
bootstrap methods. These methods still appeal to n being “large enough”, but they do so in a dif-
ferent way. They also require computing power, because bootstrapping involves resampling new
datasets from our original dataset X. This has become increasingly feasible, and boostrap-based
methods have become increasingly popular.

B.3.2 Example: LLN and the sample mean

Let’s go through the logic of Figure B.2 in more detail in the case of the the law of large numbers. The
LLN tells us that when we let the sample mean X̄n define our asymptotic sequence Zn, the resulting
distributions FZn eventually cluster all of their probability mass around the point µ, the sample mean.
Figure B.3 illustrates this point, through a simulation in R. I drew 1,000 i.i.d samples of size n of a
random variable Xi for which P (Xi = 0) = 1/2 and P (Xi = 1) = 1/2, representing a coin flip. Then, I
plot a histogram of X̄n across the 1,000 samples. This process is repeated for n = 2, n = 10, n = 100
and n = 1, 000. You can think of this as illustrating Figure B.2 for the specific population distribution
F that describes a coin-flip. With n = 2, we see that we have a 50% chance of getting X̄n of 0.5, which
is the true “population mean” of Xi: µ = E[Xi] = 0.5. Then 25% of the time we get X̄n = 0 (two flips
of tails), and 25% of the time we get X̄n = 1 (two flips of heads). Thus, the distribution of X̄n is not
very well concentrated around µ = 0.5.

The red vertical lines in Figure B.3 illustrate the law of large numbers in action. They mark the
points 0.45 and 0.55, which represent a ε = .05 in Theorem 4. We can see that by the time n = 100,
P (|X̄n − 1/2| > 0.05) starts to become reasonably small; roughly 1/3 of the mass of X̄n is outside of
[0.45, 0.55]. When n = 1000, there is an imperceptible chance of obtaining an X̄n outside of the vertical
red lines. If we continued this process for larger and larger n, we would see the mass of X̄n continue to
cluster closer and closer to µ = 1/2. Regardless of how small a ε we choose, we can always find an n
that fits as much of the mass as we want inside the corresponding red lines.

112



n Zn FZn

1 Z1

2 Z2

...

10, 576 Z10,576θ̂ →

...

100, 000 Z100,000

...

∞ Z∞

≈

Figure B.2: We are interested in the sampling distribution of some statistic θ̂, computed on our sample of 10, 576
observations. This is in general hard to compute. As a tool, we imagine a sequence of random variables Z1, Z2, . . .
in which θ̂ = Z10,576. Asymptotic theory allows us to derive properties of FZ∞ , the limiting distribution of Zn

as n → ∞ (circled in green). Then we use FZ∞ as an approximation to FZ10,576 , which we justify by n being
“large”. The above figure depicts a situation in which Zn = X̄n, so that the distribution of Zn narrows to a
point as n→∞ (by the LLN).

Note that the law of large numbers does not say that P (|X̄n − µ| > ε) will necessarily monotonically
decrease with n, for each n. For example, we can see that for ε = .05, we have that P (|X̄1−µ| > ε) is 0.5
and P (|X̄2 − µ| > ε) is about 0.25. All that the LLN says is that P (|X̄1 − µ| > ε) will get (arbitrarily)
small with n, for any value of ε.
The following is the R code I used to generate this figure, if you’d like to copy-paste it and experiment:

numsims <-1000

par(mfrow=c(2,2), main="Title")

for (n in c(2 ,10 ,100 ,1000)){

results <-data.frame(simulation_num=integer (), sample_mean=

double ())

for (x in 1: numsims) {

thissample <-sample(c(0, 1), size = n, replace=TRUE

)

samplemean <-mean(thissample)

results[x,] = c(x,samplemean)

}

h<-hist(results$sample_mean , plot=FALSE , breaks = seq(from

=0, to=1, by=.01))

h$density = h$density/100

plot(h, freq=FALSE , main=paste0("Distribution of sample

means , n=",n," coin flips"), xlab="Sample mean", ylab=

"Proportion of samples", col="green")

abline(v=c(.45 ,.55), col=c("red", "red"))

}
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Figure B.3: Distributions along the sequence X̄n for a set of n i.i.d. coin flips. Red liness illustrate the mass
of the distribution X̄n that is more than .05 away from 1/2.

B.4 Convergence in probability and convergence in distribution

Given a sequence of random variables or random vectors Z1, Z2, . . . , let us now define two notions of
convergence of the sequence Zn. The first is convergence in probability :

Definition B.4. We say that Zn converges in probability to Z if for any ε > 0:

lim
n→∞

P (||Zn − Z|| > ε) = 0

In this definition, Zn can be a random variable/vector. When Zn is a random variable, then the notation
||Zn − Z|| jut refers to the absolute value of the difference: |Zn − Z|. When Zn is a vector, we can take
||Zn − Z|| to be the Euclidean norm of the difference (see Proposition B.3 for an example).

We will often talk about Zn converging in probability to a constant c. This does not require a second
definition because a constant is simply an example of a random variable that has degenerate distribution
P (Z = c) = 1. Thus we say that Zn converges in probability to a constant c if limn→∞ P (|Zn−Z| > ε) = 0
for all ε > 0.

Notation: When Zn converges in probability to Z, we write this as Zn
p→ Z, or alternatively plim(Zn) =

Z. We say that Z is the probability limit of the sequence Zn. We use the same notation when Z is a
constant.

The law of large numbers, for example, says that X̄n
n→ µ, the sample mean converges in probability to

the “population mean”, or expectation, of Xi.

Exercise: This problem gives an example of a sequence that converges in probability to another random
variable, rather than to a constant. Let Zn = Z + X̄n, where Z is a random variable and X̄n is the
sample mean of i.i.d. random variables Xi having zero mean and finite variance. Suppose furthermore
that Z and X̄n are independent. Show that plim(Zn) = Z.

Our second notion of convergence of a sequence of random vectors is convergence in distribution.
Consider first a sequence of scalar random variables:

Definition B.5. We say that a random variable Zn converges in distribution to Z if, for any z such
that the CDF FZ(z) = P (Z ≤ z) of Z is continuous at z:

lim
n→∞

P (Zn ≤ z) = FZ(z)

114



Notation: When Zn converges in distribution to Z, we write this as Zn
d→ Z. As with convergence in

probability, Z can be a random vector or a constant.

Note: The requirement that we only consider z where FZ(z) is continuous is a technical condition,
which we can often ignore because we’ll be thinking about continuously distributed Z. In general, we
can construct examples in which limn→∞ P (Zn ≤ z) is not right-continuous (and is thus not a valid
CDF), but the valid CDF function FZ(z) nevertheless captures the limiting distribution of Zn. In these

cases we still want to say that Zn
d→ Z.

The definition given above for convergence in distribution takes Zn to be a random (scalar) variable to
emphasize the idea, but the concept extends naturally to sequences of random vectors. We say that a
sequence of random vectors Zn converges in distribution to Z if for all z at which the joint CDF of the
components of Z FZ(z) does not have a discontinuity, the limit of the CDF of Zn evaluated at that point
as n→∞ is FZ(z).

Convergence in distribution essentially says that the CDF of Zn point-wise converges to the CDF of

Z. By “point-wise”, we mean that this occurs for each value z. When Zn
d→ Z, we often refer to Z as

the “large-sample” or “asymptotic” distribution of Zn.
We close this section by investigating the relationship between convergence in probability and con-

vergence in distribution. Convergence in distribution is a weaker notion of convergence (and is in fact
often called “weak” convergence), in the sense that it is implied by convergence in probability.

Proposition B.2. If Zn
p→ Z, then Zn

d→ Z. In the special case that Z is a degenerate random

variable taking value of c, then Zn
d→ c also implies Zn

p→ c. Thus when Z is degenerate, convergence in
distribution and probability are equivalent to one another.

One manifestation of the fact that convergence in probability is stronger than convergence in distribution
is that with the former, covergence of elements of a random vector implies convergence of the whole
random vector:

Proposition B.3. If Xn
p→ X and Yn

p→ Y , then

(
Xn

Yn

)
p→
(
X
Y

)
.

Proof. Since for any limn→∞ P (|Xn − X| > ε) = 0 and limn→∞ P (|Yn − Y | > ε) = 0 holds for any
ε > 0, let’s consider a value ε/

√
2. Let Zn := (Xn, Yn)′ and Z := (X,Y )′. Since ||Zn − Z|| =√

(Xn −X)2 + (Yn − Y )2 being larger than ε is the same as (Zn − Z)2 being larger than ε2, and since
at least one of (Xn −X)2 or (Yn − Y )2 must then be larger than half of ε2, we have:

P (||Zn − Z|| > ε) = P ((Xn −X)2 + (Yn − Y )2 > ε2) ≤ P ((Xn −X)2 > ε2/2 or (Yn − Y )2 > ε2/2)

≤ P ((Xn −X)2 > ε2/2) + P ((Yn − Y )2 > ε2/2)

we have that

lim
n→∞

P (|Zn − Z| > ε) = lim
n→∞

P (|Xn −X| > ε/
√

2) + lim
n→∞

P (|Yn − Y | > ε/
√

2) = 0 + 0 = 0

Meanwhile, the same is not true of convergence in distribution: Xn
d→ X and Yn

d→ Y does not in general

imply that

(
Xn

Yn

)
d→
(
X
Y

)
. However, one important special case in which it does is when X or Y is a

degenerate random variable. This is useful for example in proving Slutsky’s Theorem in Section B.6.

The next section will introduce the most famous and useful instance of convergence in distribution:
the central limit theorem (CLT). After introducing the CLT, we will return in Section B.6 to some fur-
ther properties of convergence in probability and convergence in distribution, that will be useful in the
analysis of large samples.
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Optional: There is an even stronger notion of convergence than convergence in probability, re-
ferred to as almost-sure convergence. We say that Zn converges almost surely to Z, or, Zn

a.s.→ Z,
if

P
(

lim
n→∞

Zn = Z
)

= 1

To make sense of this expression we have to place a probability distribution over entire sequences
{Zn} (something we didn’t need to do for convergence in probability or convergence in distribu-
tion). That is, we imagine a probability space in which each outcome ω yields to a realization
of all of the random variables: Z, Z1, Z2, Z3, and so on. Then, the above expression says that
P ({ω ∈ Ω : limn→∞ Zn(ω) = Z(ω)}) = 1. In words: the probability of getting a sequence of Zn
that does not converge to Z with n is zero.

Almost sure convergence is stronger than convergence in probability, i.e. Zn
a.s.→ Z implies that

Zn
p→ Z (which of course in turn implies that Zn

d→ Z). The strong law of large numbers states

that the sample mean in fact converges almost surely to the population mean, that is X̄n
a.s.→ µ.

B.5 The central limit theorem

The central limit theorem (CLT) tells us that if we construct from the sample mean X̄n the a random
variable Zn =

√
n(X̄n − µ), then the sequence Zn converges in distribution to that of a normal random

variable.

Theorem 5 (central limit theorem). If Xi are i.i.d random vectors and E[X ′iXi] <∞, then

√
n(X̄n − µ)

d→ N(0,Σ)

where Σ = V ar(Xi), µ = E[Xi], and 0 is a vector of zeros for each component of Xi.

The central limit theorem is quite remarkable. It says that whatever the distribution of Xi is, the limiting
distribution of X̄n (recentered by µ and rescaled by

√
n) will be a normal distribution. This striking

result will pave the way for us to perform inference on the expectation of a random variable, without
knowing its full distribution˙

Why the CLT is useful:

The practical value of the CLT is that it delivers an approximation to the distribution of X̄n. For large
n, we know that

√
n(X̄n−µ) has approximately the distribution N(0,Σ). Using properties of the normal

distribution, we can re-arrange this to say that X̄n ∼ N(µ,Σ/n), approximately. To get a good guess of
the distribution of X̄n, we only need to have estimates of µ and Σ, which is much easier than estimating
the full CDF of Xi from data.

Example: Suppose for simplicity that we had reason to believe that Σ = 1, i.e. we have a random variable
Xi with a variance of 1. However, we don’t know µ. We do know then, by the CLT, that for large n, X̄n

is approximately normally distributed around µ with a variance of 1/n. This is extremely useful, because
we can now evaluate candidate values of µ, based on how unlikely we would be to see a value of X̄n like
the one that we calculate, if that value of µ was true. Suppose for example that n = 100, and in our
sample we observed that X̄n = 0.31. You want to evaluate the possibility that µ = 0. Well, if this were
the true value of µ, then given the asymptotic approximation that X̄n ∼ N(0, 1/n) (or equivalently, that
10 · X̄n ∼ N(0, 1)), we’d only expect to see a value of X̄n as large as 0.3 once in about 1000 samples. We
might thus be willing to rule µ = 0 out as a possibility. This is an example of a hypothesis test, which
will be covered in Section C.4.1.

Illustrating the CLT:
Figures B.3 and B.4 illustrate the CLT in action. Recall that in this example Xi has a two-point
distribution P (Xi = 0) = 1/2 and P (Xi = 1) = 1/2). The distribution of X̄n becomes closer and closer
to a normal distribution centered around µ = 1/2 as n gets large. To the eye, the distribution of X̄n

definately does not look normal for n = 2 or for n = 10 in Figure B.3. But by the time we have n = 100,
it starts to take on the bell-curve shape. We see the variance Σ/n falling as we compare n = 100 and
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Figure B.4: The same simulation as in Figure B.3, except now we plot the distribution of
√
n(X̄n− 1/2) rather

than of X̄n. The CLT tells us that
√
n(X̄n − 1/2)

d→ N(0, 1/4), since 1/4 is the variance of Xi. Green dashed
lines depict what is predicted by the distribution N(0, 1/4), which we can see becomes close to what we see for
larger values of n.

n = 1000: the latter has a variance about 1/10 as large. In Figure B.4, we plot the distribution of√
n(X̄n − 1/2) overlaid with its limiting distribution.

Thought experiments like this simulation experiment are useful for getting intuition about the CLT.
Accorindly, you often hear descriptions of the CLT along the lines of: “the sample mean becomes normal
as the sample gets bigger and bigger”. This isn’t wrong, but can be a little misleading. A given real-world
sample never gets bigger: it always has a single finite size n! Similarly, the sample size n never “goes to
infinity”–though we can get pretty close by simulating a sequence of samples on a computer! Imagining
an infinite sequence of samples having means X̄1, X̄2, and so on, is just a useful abstraction.

The following proof of the CLT is not necessary for you to know, but you may find it interesting, and
being able to follow it is a good study device.

Proof of the CLT:

We’ll consider a proof for the univariate case, which can be extended to random vectors
using the Cramér-Wold theorem introduced in Section B.6. The proof here will use the concept
of a moment generating function:

MX(t) := E[et·Xi ] = 1 + t ·E[Xi] +
t2

2
·E[X2

i ] +
t3

3!
·E[X3

i ] + . . . (B.1)

where the second equality uses the Taylor expansion of etx. This will be a useful expression for
the moment generating function MX(t). Note that MX(t) is a (non-random) function of t: the
randomness in Xi has been averaged out.

A useful result (that we will not prove here) is that if two random variables X and Y have the
same moment generating function MX(t) = MY (t) for all t, then they have the same distribution.
Our goal will be to show that whatever the distribution of Xi, the moment generating function
of
√
n(X̄n − µ) converges to that of a normal random variable with variance σ2 = V ar(Xi).

Let us divide out the variance to rewrite the CLT (in the univariate case) as
√
n · X̄n−µσ

d→ N(0, 1).
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The moment generating function of the standard normal distribution is:

MZ(t) :=
1√
2π

∫
dx · etx · e− x

2

2 = e−
t2

2 · 1√
2π

∫
dx · ·e− (x−t)2

2 = e−
t2

2

where we’ve used that (x− t)2 = x2 − 2tx+ t2 and that the final integral is over the density of a
normal random variable with mean t and variance 1.

Now for the magic part. We’ll show that whatever the distribution of Xi is, and hence whatever
the moment generating function of Xi, the moment generating function of

√
n · X̄n − µ

σ
=

1√
n

X1 − µ
σ

+
1√
n

X2 − µ
σ

+ · · ·+ 1√
n

Xn − µ
σ

will end up being e−
t2

2 !

First, note that when Y and Z are independent of one another, the moment generating function
of Y +Z is equal to the product of each of their moment generating functions, i.e. E[et(Xi+Zi)] =
E[etYi · etZi ] = E[etYiE[etZi ]. Applying this to the above expression, we have that:

M√
n· X̄n−µσ

(t) = M 1√
n
X−µ
σ

(t) ·M 1√
n
X−µ
σ

(t) · · · · ·M 1√
n
X−µ
σ

(t) =

(
1√
n
MX−µ

σ
(t)

)n

Note that for any random variable Y , M 1√
n
·Y (t) = MY (t/

√
n). Therefore, we wish to show that

lim
n→∞

(
MX−µ

σ
(t/
√
n)
)n

= e−
t2

2

for any t.

Applying the Taylor series expansion of the moment generating function in Equation B.1, we have
that:

MX−µ
σ

(t/
√
n) = 1 +

t√
n
·E
[
Xi − µ
σ

]
+
t2

2n
·E
[(

Xi − µ
σ

)2
]

+
t2

n
· g
(

t√
n

)

where by the Taylor theorem limn→∞ g
(

t√
n

)
= 0. Note that E

[
Xi−µ
σ

]
= 0 and E

[(
Xi−µ
σ

)2
]

=

1, and thus we wish to show that

lim
n→∞

(
1 +

t2

2n
+
t2

n
· g
(

t√
n

))n
= e−

t2

2

Recall the identity that limn→∞(1 + x/n)n = ex. If we can ignore the g term then we are done.
To show that the g term indeed does not contribute in the limit, consider taking the natural
logarithm of both sides of the above equation (since the log is continuous function, it preserves
limits):

lim
n→∞

ln

{(
1 +

t2

2n
+
t2

n
· g
(

t√
n

))n}
= lim
n→∞

n · ln
(

1 +
t2

2n
+
t2

n
· g
(

t√
n

))

= lim
n→∞

n ·
(
t2

2n
+
t2

n
· g
(

t√
n

))
= − t

2

2
+ t2 · lim

n→∞
·g
(

t√
n

)

= − t
2

2

where we’ve used the Taylor theorem for the natural logarithm: ln(1 + z) = z + z · h(z) where

limz→0 h(z) = 0, and we have that limn→0

(
t2

2n + t2

n · g
(

t√
n

))
= 0.
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B.6 Properties of convergence of random variables

This section presents several results that are useful in the analysis of large samples. We will make heavy
use of them, for example, when we study the asymptotic properties of the linear regression estimator.

B.6.1 The continuous mapping theorem

The continuous mapping theorem (CMT) states that the notions of convergence in probability and
convergence in distribution are preserved when we apply a continuous function to each random vector
in a sequence Zn, that is:

Theorem 6 (continuous mapping theorem). Consider a sequence Zn of random vectors and a
continuous function h. Then:

• if Zn
p→ Z, then h(Zn)

p→ h(Z)

• if Zn
d→ Z, then h(Zn)

d→ h(Z)

Example: By the large of large numbers and the CMT:
(
X̄n + 5

) p→ (µ+ 5), where µ = E[Xi].

Example: Let Zn =
√
n(X̄n − µ). Then by the CLT and CMT: Z2

n = n
(
X̄n − µ

)2 d→ χ2
1, where χ2

1 is
the chi-squared distribution with one degree of freedom (this is the distribution of a standard normal
N(0, 1) random variable squared).

Note: The assumption that h is (globally) continuous can be weakened, which is often important in
applications.

• When Z is a contant (call it c), then the convergence in probability part of the CMT only requires
that h(z) be continuous at c, rather than everywhere.

• The convergence in distribution part of the CMT can be extended to cases in which h has a set
of points z ∈ D at which it is discontinuous, provided that P (Z ∈ D) = 0. This is useful when
combined with the CLT, for which Z is continuously distributed. Hence applying an arbitrary
function h to Zn =

√
n(X̄n − µ) allows us to use the CMT provided that h has only a discrete set

of points of discontinuity.

A set of useful/common applications of the CMT are summarized by the so-called Slutsky’s Theorem:

Theorem 7 (Slutsky’s Theorem). Suppose Zn
d→ Z and Yn

p→ c with c a constant. Then:

• Zn + Yn
d→ Z + c

• Zn · Yn d→ cZ

• Zn/Yn d→ Z/c if c 6= 0.

To see how these results follow from Theorem 6, note that since c is a constant, Zn
d→ Z and Yn

p→ c is
equivalent to (

Zn
Yn

)
d→
(
Z
c

)

(see discussion following Proposition B.3). Then we can apply the CMT to the sequence

(
Zn
Yn

)
, with

the following continuous functions h, respectively:

• h(Z, Y ) = Z + Y

• h(Z, Y ) = Z · Y

• Zn/Yn = h(Z, Y ) = Z/Y
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B.6.2 The delta method

Note that when combined with the CLT, the continuous mapping theorem allows us to talk about the
asymptotic distribution of h

(√
n(X̄n − µ)

)
for a continuous function h. What is often more useful is to

talk about the asymptotic distribution of
√
n(h(X̄n)−h(µ)). That is, when we apply a function h to our

sample mean, how does the limiting distribution of h(X̄n) look as it converges around h(µ)? (Exercise:
which result allows us to know that h(X̄n) does converge around h(µ)?)

The delta method gives us a tool to address exactly this question:

Theorem 8 (the delta method). If
√
n(Zn − µ)

d→ ξ for some random vector ξ, then if h(z) is
continuously differentiable in a neighborhood of z = µ:

√
n(h(Zn)− h(µ))

d→ ∇h(µ)′ξ

where ∇h(z) = ( dd1
h(z), dd2

h(z), . . . )′ is a vector of the derivatives of h with respect to each component
of Z.

Consider now what this implies in the case of the CLT:

Corollary 1. If Xi are i.i.d random vectors, h(x) is a function that is continuously differentiable at
x = µ, and E[X ′iXi] <∞, then

√
n(h(X̄n)− h(µ))

d→ N(0,∇h(µ)′Σ∇h(µ))

where Σ = V ar(Xi) and µ = E[Xi].

Proof. Beginning from Theorem 8, we only need to show that for a random variable Z ∼ N(0,Σ),
h(µ)′Z ∼ N(0,∇h(µ)′Σ∇h(µ)). We can see this in two steps. First of all, since a linear combination
of normal random variables is also normal, we know that a′Z is normal for any normally-distributed
k−component random vector and k−component vector a. We thus need only to work out the mean and
variance of h(µ)′Z to characterize its full distribution. By linearity of the expectation, E[h(µ)′Z] = 0,
since each component of Z has mean zero. You also showed in HW 3 that the variance of a′Z is a′Za.
Substituting a = h(µ) completes the proof.

The most important special case of the corollary above is when Xi is a random variable. In this case,
we don’t need any matrix multiplication and we have that:

√
n
(
h(X̄n)− h(µ)

) d→ N

(
0,

(
d

dx
h(µ)

)2

· σ2

)

Note that if the function h is very sensitive to the value of x near µ, i.e. d
dxh(µ) has a large magnitude,

then the asymptotic variance of h(X̄n) will be large, since the funciton h blows up the variance of Xi by

a factor
(
d
dxh(µ)

)2
.

B.6.3 The Cramér–Wold theorem*

The following theorem, referred to as the Cramér–Wold theorem or the Cramér–Wold “device”, is another
tool in asymptotic analysis. We won’t find it as useful as CMT or delta method, but it’s worth seeing
so I mention it here:

Theorem 9 (the Cramér–Wold device). If Zn is a sequence of random vectors having k components,

then Zn
d→ Z if and only if a′Zn

d→ a′Z for all (non-random) k−component vectors a.

One very important application of the Cramér–Wold device is in extending the central limit theorem to
random vectors. In Section B.5, we only proved the CLT for a random variable. The following exercise
asks you to derive the multivariate CLT from the univariate CLT.

Exercise: Use the Cramér–Wold device to show that if Theorem 5 applies to random variables Xi,
then it applies to a random vector Xi = (X1i, X2i, . . . Xki)

′ as well (assume that any necessary moments
exist).

120



B.7 Limit theorems for distribution functions*

While the law of large numbers might appear to be somewhat limited, in that it only talks about the
mean, it is surprisingly versatile. For example, it implies that sample probabilities converge to their
population counterparts. Suppose we have an i.i.d. collection of Xi and are interested in F (x), the
population CDF of Xi evaluated at some specific x. Then we can define Zi = 1(Xi ≤ x), a random
variable that takes a value of 1 if Xi ≤ x, and zero otherwise. Since the collection {Z1, Z2, . . . Zn} is
i.i.d, and has the finite mean:

E[Zi] = E[1(Xi ≤ x)] = P (Xi ≤ x) = F (x)

the law of large numbers implies that the sample mean of Zi converges in probability to F (x). The
sample mean of Zi is simply

1

n

n∑

i=1

1(Xi ≤ x) =
number of i for which Xi ≤ x

number of i in sample
,

the proportion of the sample for which Xi ≤ x. When considering this quantity across all x, we call the
resulting function the empirical CDF of Xi, denoted as Fn(x).

Thus, for each x the empirical CDF evaluated at x converges in probability to the population CDF

evaluated at x, i.e. Fn(x)
p→ F (x). This result can be strengthened in two ways (which are not implied by

the weak law of large numbers). Consider the error in Fn(x) as an approximation of F (x), |Fn(x)−F (x)|
as a function of x. This may be larger or smaller depending on x. The Glivenko-Cantelli theorem states
that even the largest error, over all x, converges to zero, and furthermore that this convergence is almost
sure convergence (see box at the end of Section B.4), rather than convergence in probability:

Theorem 10 (Glivenko-Cantelli theorem). If Xi are i.i.d, then:

sup
x∈R
|Fn(x)− F (x)| a.s.→ 0

We won’t use Theorem 10 in this class, but it can be useful for proving properties of asymptotic sequences
that involve quantities that cannot be written as a function of X̄n.
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Appendix C

Statistical decision problems

This chapter presents a formal view of the goals of using statistics for econometrics. It starts with the
question: what is it that we would like to learn? Once we’ve defined our “parameter of interest”, we can
separate much of econometrics into three parts: identification, estimation and inference.

I will not attempt at a thorough or rigorous treatment of many of the concepts this chapter touches
upon. Rather, I hope it can present a unified way to think about several concepts you have probably
seen in one form or another in previous courses, and serve either as a reference or a starting point to
exploring terms in econometrics as you come across them in your own research.

C.1 Step one: defining a parameter of interest

Why do we use statistics? A short answer is that we want to learn things about the world, and data is the
lens with which we investigate some population within it. A more careful answer, which is well-aligned
with the specific approach that econometrics takes to using statistics, is that there are specific features
θ of the world that we care about.

We can distinguish between three types of parameter of interest, θ.

First type (model parameters): Think back to the idea of a parametric statistical model, introduced in
Chapter ??. Suppose we observe i.i.d data Xi, where the distribution of Xi is thought to belong to
a parametric family F (·; θ) for some θ ∈ Θ. For example, we might be willing to assume that Xi is a
normally distributed random variable, with unknown mean µ ∈ R and variance σ2 > 0. In this case,
θ = (µ, σ), and in the absence of any further assumptions about θ: Θ = R×R+, where R+ is the set of
all positive real numbers (the variance cannot be negative). In this context, it is natural to take the full
vector of model parameters θ to be our parameter of interest (of course, we might only be interested in
e.g. µ, in which case µ alone is our parameter of interest, and similarly with σ).

Second type (features of observed variables in the population): We don’t need parametric statistical mod-
els to talk about parameters of interest, however. If we have i.i.d. data drawn from any population
distribution F , we might think of some aspect of F that we’d like to know. For example, we might be
interested in E[Xi], but don’t want to assume that Xi is normally distributed, as in the last example.
Then, our parameter of interest is θ = E[Xi]. Another parameter of interest might be the median of F ,
the point x at which F (x) = 1/2. In this case, θ = inf{x : F (x) ≥ 1/2} (this general definition allows
for a non-continuous F , in which case there may be no x such that F (x) = 1/2 exactly).

Third type (quantities that depend on unobservables): One of the exciting and difficult things about
applied econometrics is that often our parameters of interest do not depend solely on the distribution F
of the vector of variables X that we observe in our data. Rather, θ often depends also on the distribution
of some other variables U that are not observed. This situation most often arises when discussing
causality, for example when our parameter of interest summarizes the causal effect of a policy. Talking
about causality involves some new notation and concepts, so we’ll defer further discussion to Chapter
1. As a simpler example of a situation that involves unobservables, let us consider a different important
practical problem: measurement error.
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Suppose our parameter of interest is θ = E[Zi], the average value of some random variable Zi.
However, our data was not recorded perfectly, and instead of an i.i.d sample of Zi, we observe an
i.i.d sample of Xi = Zi + Ui, where Ui represents unobserved “measurement error”. In this case, our
parameter of interest can be written as E[Xi −Ui], which depends both upon the distribution of X and
the distribution of U .

C.2 Identification

Once we have a parameter of interest in mind, a good starting point is often to ask the question: “could
I determine the value of θ if I had access to the population distribution F underlying my data?”.

If the answer is no, then no amount of statistical wizardry will allow you to learn the value of θ. If
the answer is yes, then we say that θ is identified.

Definition C.1. Given a statistical model F for (X,U), we say that θ is identified when there is a
unique value θ0 of θ compatible with FX , the population CDF of observable variables X.

Often identification is described as saying that if we observed an “infinite” sample, we could determine
the value of θ. The reason for this is that by the law of large numbers, we can learn the entire population
distribution of X from an i.i.d sample Xi, as the sample size goes to infinity (see discussion in Section
B.7). Of course, we never observe an infinitely large dataset, but defining identification in terms of what
we could know if we did cleanly separates problems of research design from the statistical problem of
having too small a sample.

Whenever our parameter of interest is defined directly from the population distribution FX of observables
(e.g. θ = E[Xi]), it will be identified. Thus, parameters of the second type are always identified. This
logic often applies to parameters of the first type as well, except in cases when F (·; θ) doesn’t always
change with θ (see example below). Questions of identification usually arise in the third case, when our
parameter of interest θ depends on the distribution of unobservables: for example when we’re interested
in causality, have measurement error, or have “simultaneous equations”.

Example: Suppose Xi are i.i.d draws from N(µ, σ2). Then the parameters µ and σ are identified, because
each pair (µ, σ) gives rise to a different CDF FX of Xi.

Example: Suppose Xi are i.i.d draws from N(min{θ, 5}, σ2). Then θ is not identified, because different
values of θ (e.g. θ = 6 vs. θ = 7), do not give rise to a different CDF F of Xi.

Example: In the measurement error example, suppose that we’re willing to assume that E[Ui] = 0, that
the measurement error averages out to zero (e.g. there are equal chances of getting positive and negative
errors of the same magnitude). Then θ = E[Zi] is identified, since now E[Zi] = E[Xi]. This example
underscores the role of F in Definition C.1. Whether or not θ is identified often depends on what as-
sumptions we are willing to make, which restrict the set F of possible joint-distributions for (X,U).

Below I discuss some additional issues related to identification, which may relate to terms you’ve heard
floating around about identification:

Parametric vs. non-parametric identification: When F is a non-parametric statistical model, in
the sense described in Section ??, we say that θ is non-parametrically identified. We have non-
parametric identification when we do not need to specify a parametric functional form for the
distribution of observables or unobservables. Sometimes we only have parametric identification
but not non-parametric identification. Suppose, in the measurement error example, our parameter
of interest is full distribution function FZ of Zi, and are willing to assume that Ui ⊥⊥ Zi. Then
FZ is identified if we are willing to specify the exact form of FU , e.g. Ui ∼ N(0, 1), through a
technique known as deconvolution. However, Fz is not non-parametrically identified.

Partial vs. point identification: Sometimes knowing FX is not enough to pin down the value of θ,
but it is enough to determine a set of values that θ might take. For example, we may be able to
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determine upper and lower bounds for θ. In such cases we often say that θ is partially identified.
This can be contrasted with Definition C.1, which describes point identification.

Identification of a parametric model: Suppose we have an i.i.d sample of observables Xi and
a parametric statistical model for (Xi, Ui), in the language of Section ??. Then we might say
the model is identified, when the full vector θ of model parameters are identified in the sense of
Definition C.1:

Definition C.2 (full identification of a model). Given a statistical model F for (X,U), we
say that the model is identified when when the set {θ ∈ Θ : FX(·) = FX(·, θ)} is a singleton,
where FX is the CDF of X.

Definition C.1 says that there is a unique value θ0 ∈ Θ such that FX(·, θ0} is equivalent to
the population distribution of observables Xi. This situation arises often in econometrics in the
context of so-called structural models in which the entire model can be characterized by a finite
set of model parameters.

C.3 Estimation

If our parameter of interest θ is identified, then we can move on to our next question: how can we
estimate it?

In this section, we treat the task of estimating θ as a decision problem. In the next section, we’ll take
the same approach to testing hypotheses about θ. This way of thinking about estimation and inference
is called statistical decision theory.

Let’s think about the task of estimating θ as a problem of choosing an optimal strategy in a particular
game, which we play along with “nature”. Nature goes first, giving us a sample X, the distribution of
which we denote abstractly as P (this is equivalent to the joint-CDF of all of the components of X). Our

goal is to think about how to form θ̂ = g(X) as a function of the data X. How should we proceed?
Recall that in game theory, a strategy is a complete profile of what we would do, given whatever the

other players do. In this context, we a strategy is not a particular numerical estimate of θ, but the function
g. For example, if our estimator is the sample mean, then g(X) = g(X1, X2, . . . Xn) = 1

n

∑n
i=1Xi, which

will depend upon the particular values of Xi occur in our sample.
As in game theory, our best-response to the actions of nature will depend upon our preferences (a.k.a.

our utility function). In statistical decision theory this takes the form of a ”loss function”: L(θ̂, θ0), where
θ0 is the true value of θ. For the most part, we consider the so-called quadratic loss function:

L(θ̂, θ0) = ||θ̂ − θ0||22 := (θ̂ − θ0)′(θ̂ − θ0)

When θ is a scalar, then this is just the square of the difference between our estimator θ̂ and the true
value θ0.

However, remember that θ̂ = g(X) is a random variable/vector, which depends on our randomly
drawn dataset X. Thus to pick a strategy g, we need to define our preferences over “lotteries”, again–as
in standard game theory. In line with expected utility theory, the convention here is to take our optimal
action g to be the minimizer of expected loss: E[L(θ̂, θ0)] where the expectation is over the distribution
of X. The risk function Rg(θ) of estimator g views the expected loss as a function of the true value of

θ. It is common to write this as Eθ[L(θ̂, θ)], where the notation Eθ makes it clear that the distribution
of X must depend in some way on the value of θ. This is motivated by cases in which we have i.i.d.
data from a parametric statistical model where θ indexes the population distribution of Xi. Then the
distribution of X depends on just two things: n and the true value of θ.

When we use the quadratic loss function, the optimal estimator g would be

g∗ := argmin
g

E[||g(X)− θ0)||22] (C.1)

However, solving this problem is not easy, because we generally don’t know the distribution of X ex-ante.
However, statisticians have developed various strategies to try to keep E[||g(X) − θ0)||22] small. These
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strategies are best understood as ways to navigate the so-called bias-variance tradeoff. The following
proposition shows that expected quadratic loss can be decomposed into two terms: one capturing the
square of the “bias” of the estimator, and the other capturing its variance.

For simplicity, we state this result in the special case that θ is a scalar. We’ll also just write θ̂ rather
than g(X), to keep the notation simple.

Proposition C.1 (the bias-variance decomposition).

E[(θ̂ − θ0)2]︸ ︷︷ ︸
expected loss

= E[(θ̂ −E[θ̂]))2]︸ ︷︷ ︸
variance of θ̂

+


E[θ̂]− θ0︸ ︷︷ ︸

bias of θ̂




2

(C.2)

Proof. Add and subract E[θ̂] to obtain:

E[
{

(θ̂ −E[θ̂]) + (E[θ̂]− θ0))
}2

] = E[(θ̂ −E[θ̂]))2] + 2 ·E[(θ̂ −E[θ̂])(E[θ̂]− θ0)] +
(
E[θ̂]− θ0

)2

Now observe that the middle term is zero, because

E[(θ̂ −E[θ̂])(E[θ̂]− θ0)] = (E[θ̂]− θ0) ·E[(θ̂ −E[θ̂])] = (E[θ̂]− θ0) ·
(
�
��E[θ̂]−��

�
E[θ̂]

)
= 0

since (E[θ̂]− θ0) is just a non-random number.

Equation (C.2) is described as a bias-variance tradeoff because often strategies to decrease bias come
at the expense of increasing variance, and vice-versa. Suppose for example that we just pick g(·) = 5,
estimating θ to be 5, regardless of what sample we see. This estimator will have zero variance! But we
can expect the bias 5− θ0 to be quite large. On the other hand, extremely flexible estimation methods
are often good at minimizing bias, but doing so may increase variance. The field of non-parametric
estimation chooses estimators to explicitly navigate this tradeoff.

C.3.1 Desirable properties of an estimator

This section investigates some desirable properties of an estimator, in light of the bias-variance tradeoff.
It is not meant to deliver a detailed account of these properties, but simply to serve as a reference for
what the associated terms mean. Please see the course textbooks for more details.

C.3.1.1 Consistency

The first thing that we might ask of our estimator is that it be consistent. What we mean by that is that

θ̂
p→ θ0

regardless of the value of θ0. Consistency means that as n goes to infinity, the entire expected loss in
Equation (C.2) converges to zero.

C.3.1.2 Rate of convergence

Consider the sample mean X̄n viewed as an estimator of the population mean µ = E[Xi]. We know by
the LLN that X̄n is a consistent estimator of µ, and we furthermore know by the CLT that

np(X̄n − µ)
d→ N(0, V ar(Xi))

if we set p = 1/2. Note that if we set the power p on n to be any larger than 1/2, then the LHS
would blow up, rather than converging in distribution to anything (like a normal distribution). On the
other hand, if we had set p < 1/2, then np(X̄n − µ) will simply converge in probability to zero. 1/2 is
“Goldilocks” level of p in which we get a non-degenerate asymptotic distribution for np(X̄n − µ).

In general, when we have a consistent estimator θ̂, we call the maximum value of p such that np(θ̂−θ0)
converges in distribution to something (technically, to some distribution that is “bounded in probability”)

the rate of convergence of θ̂. The rate of convergence of the sample mean is 1/2, and we often say that it

125



is
√
n−consistent.

√
n-consistency is a desirable property, which is shared by many common estimators.

However, some estimators have a slower rate of convergence. For example, suppose we’d like to estimate
the density θ = f(x) of a d−dimensional random vector Xi at some point x, and we’d like to make this
estimation non-parametric—that is, not based on assuming a parametric model for f(x).

We can do so using the so-called kernel density estimator f̂K(x), which has a rate of convergence

no better than p = 2
d+4 . When d = 1, for example, we can only blow up (f̂K(x) − f(x)) by a factor

of n2/5 and get an asymptotic distribution. In practice, this means that we need a larger sample n
for asymptotic arguments to provide good approximations to the sampling distribution of f̂K(x). This

becomes a real problem as d starts to increase: for example, the rate of convergence f̂K(x) when d = 5 is
just 2/9. This problem is often referred to as the curse of dimensionality, and is why we need very large
samples—and/or even more clever techniques—to do non-parametric estimation with many covariates.

C.3.1.3 Unbiasedness

If an estimator is unbiased if it manages to make the second term in Equation (C.2) zero, that is:

E[θ̂] = θ0

Unbiasedness has a nice interpretation: we know that θ̂ 6= θ0 in general, but we know that θ̂ will be right
on average, over different realizations of our dataset.

An example of an unbiased estimator is the sample mean, when our parameter of interest θ is the
population mean E[Xi]. In Section B.2, we showed indeed that E[X̄n] = E[Xi], regardless of n or the
true value of E[Xi] (so long as it exists).

Note that an estimator can be consistent without being unbiased. For example, the estimator θ̂ =
n+1
n X̄n is biased as an estimator for θ0 = E[Xi], because

E[θ̂]− θ0 =
n+ 1

n
· θ0 − θ0 =

θ0

n
6= 0

unless θ0 = 0. However, this θ̂ is consistent. This implies that as n approaches infinity, both its bias
and its variance converge to zero. If an estimator has an asymptotic bias (that is, a bias that doesn’t go
away with n), then it cannot be consistent.

C.3.1.4 Efficiency

Econometricians often speak of an estimator as being efficient. Loosely speaking, this typically means
that θ̂ minimizes mean squared error (C.2) among some class of estimators.

For example, we might consider the class of unbiased estimators, and ask whether a given θ̂ minimizes
Eq. (C.2). Since the bias term is zero for all estimators in this class, the efficient estimator will be the
one that minimizes variance.

In the context of parametric models, the Cramer-Rao lower-bound establishes the smallest variance that
an unbiased estimator can possibly have (even when θ is a vector, though the definition of “smallest”
here requires qualification). The maximum likelihood estimator, discussed in the next section, achieves
this bound: it is thus efficient, whenever it happens to be unbiased (which is not guaranteed in general).

A related notion is asymptotic efficiency, which says that an estimator is efficient as n→∞.

C.4 Statistical Inference*

In Section C.3, our goal was to deliver a point-estimate θ̂ of our parameter of interest. That is, we want
a number that yields something close to the true value θ0 of θ.

Sometimes we can settle for a less ambitious goal, which is to ask not what the exact value of θ0 is,
but rather we want to know whether or not θ0 belongs to some set of values. I will discuss two approaches
of this type: i) hypothesis testing, in which we want to test whether θ0 ∈ Θ0 for some fixed set Θ0; and
ii) interval estimation, in which we want to construct a set Θ̂ that has some desirable relationship to θ0

(for example contains θ0 with high probability)
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C.4.1 Hypothesis testing

Beginning with some overall space of admissible values Θ (e.g. the real numbers), let us carve the space
into two sets: Θ0 and Θ1, where Θ0 ∪ Θ1 = Θ and Θ0 ∩ Θ1 = ∅. We call our hypothesis that θ0 ∈ Θ0

the null-hypothesis:

(Null hypothesis) H0 : θ0 ∈ Θ0 (Alternative hypothesis) H1 : θ0 ∈ Θ1

Note that provided that our model θ0 ∈ Θ is correctly specified, either the null hypothesis H0 or the
alternative hypothesis H1 holds.

Continuing of the approach of statistical decision theory, we may think of our action space as now
as consisting of two actions d ∈ {a, r}, either accept (a) or reject (r) the null-hypothesis H0. This can
be contrasted with estimation, in which our action space was to pick a specific value in Θ to serve as an
estimate for θ.

In this context, a strategy is a mapping from the possible datasets X that we might see to an action
{a, r}. This function d(X) is referred to as a decision rule, or a test. To think about what kind of a test
might be optimal, we again need to specify our preferences, or a loss function, over actions. Compared
with estimation, in which our loss function took the form L(θ̂, θ), it now takes the form L(d, θ0): how
happy would we be with our decision d ∈ {a, r}, if we learned the true value of θ was θ0?

Compared with estimation—where the quadratic loss function is very standard—in testing it is less
obvious what our cost function could be. One thing is clear however, we’d prefer not to be wrong : we
don’t want to reject the null hypothesis (often referred to as failing to accept the null) when in fact
θΘ0, and we also don’t want to accept the null hypothesis when in fact θ0 ∈ Θ1. The first of these
errors is called a Type-I error (falsely rejecting H0) while the second is called a Type-II error (incorrectly
accepting H0).

The most basic loss function we might think of is called 0-1 loss, and only cares about whether we
are right or not, i.e. L(d, θ0) when either d = a and θ0 ∈ Θ0 or d = r and θ0 ∈ Θ1 (i.e. we are right), and
L(d, θ0) otherwise (we are wrong). Recall that since X is random, our decision d(X) will be random,
and thus we can again think about the risk, or expected loss, due to a particular strategy d. With the
0− 1 loss function:

E[L(d(X), θ0)] =

{
P (d(X) = r) if θ0 ∈ Θ0 (Type-I error)

P (d(X) = a) if θ0 ∈ Θ1 (Type-II error)

It is clear from the above that whether or not the null is actually true determines which probability
matters in determining the risk of the test.

Since the value of θ pins down some aspect of the distribution of X, the probability of rejecting
the null will depend upon what the true value of θ0 in fact is. Like the risk function that we saw in
estimation, let us use the notation Pθ(d(X) = r) to denote the probability of rejecting when the true
value is θ. Viewing this as a function of θ, we define the power function β(θ) of test d.

Beyond the 0− 1 loss function, we might put a different penalty on Type-I vs. Type-II errors:

L(a, θ0) =

{
0 if θ0 ∈ Θ0

`II if θ0 /∈ Θ0

while L(r, θ0) =

{
0 if θ0 ∈ Θ1

`I if θ0 /∈ Θ1

The ratio `II/`I will govern whether our test d should be more conservative about avoided Type-I errors,
or about avoiding Type-II errors.

C.4.2 Desirable properties of a test

As with estimation problems, choosing the optimal test d is a hard problem because we don’t know the
distribution of X, we can only approximate it using the dataset X that we actually observe, along with
whatever assumptions we are willing to make. As again with estimation, there are a few principles that
are used to help guide the design of statistical tests.

C.4.2.1 Size

The size α of a test d is the maximum probability of making a Type-I error (falsely rejecting), over all
θ ∈ Θ0. We can write this in terms of the power-function β(θ) as:

α = sup
θ0∈Θ0

β(θ)
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We’d like the size of a test d to be small; we therefore often design tests to control their size (keep it
below a certain value). Often we can do this in the asymptotic limit (as n→∞) even if we do now know
the size of a test in finite sample.

C.4.2.2 Power

The power of a test is given by its power function β(θ). We generally want to increase β(θ) among the
θ ∈ Θ1, to reduce the probability of a Type-II error.

C.4.2.3 Navigating the tradeoff

In general, the two desiderata of a) a small size; and b) large power, are at tension with one another. A
test that always rejects, regardless of the data X, will never make a Type-II error (have lots of power),
but may be extremely likely to make a Type-I error (have large size). On the other hand, a test that
always accepts will never make a Type-I error (have low size) but may be making lots of Type-II errors
(have low power). Often we approach testing by choosing a significance-level p ex-ante, (e.g. p = .05),
and then design the test so that it’s size is no greater than p. Given that constraint, we then try to make
the power of the test as large as possible (which usually means making it’s size exactly p).

C.4.3 Constructing a hypothesis test

The most common variety of hypothesis test takes the following form: from the data X we compute
some test statistic, call it Tn. Then we compare Tn to some critical value c, and choose to reject the
null-hypothesis if and only if |Tn| exceeds the critical value (a so-called two-sided test), or alternatively
if Tn exceeds the critical value (a so-called one-sided test).

Tests of this form are usually motivated by knowing the asymptotic distribution of Tn, i.e. Tn
d→ T

where T has some known distribution. Then we can control the size of our test by choosing c to be such
that P (T ≤ c) ≥ 1 − α. We then maximize power subject to this contraint on size by choosing c to be
exactly the 1− α quantile of T (and no lower), so that P (T ≤ c) = 1− α.

Example: Let us close by illustrating some of the concepts of this section with an example. Suppose our
statistical model is that Xi ∼ N(θ0, 1), i.e. a normal random variable with unit variance but unknown
mean θ0. We wish to test whether H0 : θ0 = 0, that is: Θ0 = {0} and Θ1 = R/{0}. Let our test statistic
be
√
n times the sample mean Tn =

√
n·X̄n. Given our model, the sample mean has the exact distribution

X̄n ∼ N(θ0, 1/n) for any n, and hence Tn ∼ N(θ0, 1). Under the null, Tn is a standard normal (since
then θ0 = 0) and hence for a two-sided test we can choose our critical value c to be the 1−α/2 quantile
of the standard normal distribution (then P (|Tn| > c) = P (Tn < −c) + P (Tn > c) = α

2 + α
2 = α). Note

that the power function β(θ) of this test is the probability that a N(θ, 1) random variable has absolute
value greater than c, which is equal to Φ(c− θ) + Φ(−c− θ), where Φ denotes the standard normal CDF.

C.4.4 Interval estimation and confidence intervals

The goal of interval estimation is to choose an a set Θ̂ of values that with high probability contains the
true value θ0. We call this interval estimation because Θ̂ typically corresponds to an interval [a, b] (if
θ is one-dimensional), or some higher-dimensional analog of an interval (e.g. a region). By contrast,
estimation in the sense of Section C.3 is by contrast referred to as point-estimation.

As with point estimation and testing, our action Θ̂ is a function of the data (however now this is a
set-valued function)—call it s(X). The coverage probability of an interval estimator s is the probability
that it contains the true value of θ0 Here the tradeoff is between increasing the coverage probability,
but without making the the interval too big (in which case we haven’t learned much about the value of
θ0). Thus with interval estimation, we might define our loss function to depend both on the coverage
probability and the length of the interval estimate.

As with estimation, we do care about the specific value of θ, not just whether or not some hypothesis
H0 about it is true. However, we’ll now see that there is a very close connection between interval
estimation and hypothesis testing.

One scenario in which we might implement interval estimation is when our parameter of interest is
only partially identified (see Section C.2). In such a setting, for example, our model might only imply
that θ0 ∈ [θL, θH ], where the bounds θL and θH are themselves point identified. Then we can construct

an interval estimate of θ0 with the set Θ̂ = [θ̂L, θ̂H ], given estimators of each of the two bounds.
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The much more common scenario in which we engage in interval estimation is when constructing a
confidence interval for θ0. We do this even when θ0 is identified and we have a consistent estimator for
it. A confidence interval makes a much more credible than a point estimate. In fact, point-estimation
is just a special case of interval estimation in which we constrain our Θ̂ to be a singleton. While
singleton will sets typically have zero probability containing θ0 (though they may be very close to it with
high probability), confidence intervals allow us to deliver an interval estimate of θ0 that takes sampling
uncertainty into account.

C.4.4.1 Confidence intervals by test inversion

The most popular method for constructing confidence intervals is to perform a hypothesis test having
size α for the null H0 : θ0 = θ, for each conceivable value of θ. Then, collect the set of all values θ that
are not rejected by that test to form our interval estimate of θ0. That is:

Θ̂ = {θ ∈ Θ : d(X) = a}

This process is often referred to as test inversion, and the resulting Θ̂ is called a (1 − α)-confidence
interval CI1−α. For example, if we used a test with size 5%, then the resulting confidence interval is
called a 95% confidence interval.

Example: Suppose we apply this principle to the example in Section C.4.3 in which Xi ∼ N(θ0, 1). There
we constructed a test for the null hypothesis that θ0 = 0, but now we need to consider more general
hypotheses of the form H0 : θ0 = θ. If we revise our test statistic to be Tn(θ) =

√
n · (X̄n − θ), we

again have that Tn has a standard normal distribution asymptotically, and thus our critical value c is
unchanged from the θ = 0 case. A 1− α confidence interval would thus be:

CI1−α = {θ ∈ R : |Tn(θ)| ≤ c} = {X̄n − c/
√
n, X̄n + c/

√
n}

where c is the 1− α quantile of the standard normal distribution.
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